Display options
Share it on

Front Plant Sci. 2017 May 02;8:630. doi: 10.3389/fpls.2017.00630. eCollection 2017.

Transcriptional Responses to Pre-flowering Leaf Defoliation in Grapevine Berry from Different Growing Sites, Years, and Genotypes.

Frontiers in plant science

Sara Zenoni, Silvia Dal Santo, Giovanni B Tornielli, Erica D'Incà, Ilaria Filippetti, Chiara Pastore, Gianluca Allegro, Oriana Silvestroni, Vania Lanari, Antonino Pisciotta, Rosario Di Lorenzo, Alberto Palliotti, Sergio Tombesi, Matteo Gatti, Stefano Poni

Affiliations

  1. Department of Biotechnology, University of VeronaVerona, Italy.
  2. Department of Agricultural Science, University of BolognaBologna, Italy.
  3. Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle MarcheAncona, Italy.
  4. Department of Agricultural and Forest sciences, University of PalermoPalermo, Italy.
  5. Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università di PerugiaPerugia, Italy.
  6. Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro CuorePiacenza, Italy.

PMID: 28512461 PMCID: PMC5411443 DOI: 10.3389/fpls.2017.00630

Abstract

Leaf removal is a grapevine canopy management technique widely used to modify the source-sink balance and/or microclimate around berry clusters to optimize fruit composition. In general, the removal of basal leaves before flowering reduces fruit set, hence achieving looser clusters, and improves grape composition since yield is generally curtailed more than proportionally to leaf area itself. Albeit responses to this practice seem quite consistent, overall vine performance is affected by genotype, environmental conditions, and severity of treatment. The physiological responses of grape varieties to defoliation practices have been widely investigated, and just recently a whole genome transcriptomic approach was exploited showing an extensive transcriptome rearrangement in berries defoliated before flowering. Nevertheless, the extent to which these transcriptomic reactions could be manifested by different genotypes and growing environments is entirely unexplored. To highlight general responses to defoliation vs. different locations, we analyzed the transcriptome of cv. Sangiovese berries sampled at four development stages from pre-flowering defoliated vines in two different geographical areas of Italy. We obtained and validated five markers of the early defoliation treatment in Sangiovese, an ATP-binding cassette transporter, an auxin response factor, a cinnamyl alcohol dehydrogenase, a flavonoid 3-

Keywords: berry transcriptome; flavonoid; grapevine; pre-flowering defoliation; secondary metabolite

References

  1. Plant Cell Rep. 2014 Aug;33(8):1365-75 - PubMed
  2. FEBS Lett. 2001 Nov 16;508(2):215-20 - PubMed
  3. Plant Cell Rep. 2012 Feb;31(2):311-21 - PubMed
  4. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 - PubMed
  5. BMC Plant Biol. 2014 Apr 28;14:108 - PubMed
  6. Plant Cell. 2011 Sep;23(9):3089-100 - PubMed
  7. BMC Genomics. 2007 Nov 22;8:429 - PubMed
  8. Front Plant Sci. 2013 Apr 17;4:79 - PubMed
  9. Biol Proced Online. 2006;8:175-93 - PubMed
  10. Neurosci Lett. 2003 Mar 13;339(1):62-6 - PubMed
  11. Funct Integr Genomics. 2016 Jan;16(1):79-94 - PubMed
  12. J Chromatogr A. 2008 Aug 1;1201(1):43-7 - PubMed
  13. BMC Genomics. 2009 May 08;10 :212 - PubMed
  14. BMC Plant Biol. 2012 Oct 09;12:185 - PubMed
  15. Bioinformatics. 2003 Jul 22;19(11):1439-40 - PubMed
  16. Plant Cell. 2013 May;25(5):1840-54 - PubMed
  17. J Vis Exp. 2016 Oct 5;(116):null - PubMed
  18. Plant Cell. 2012 Sep;24(9):3489-505 - PubMed
  19. J Agric Food Chem. 2006 Oct 4;54(20):7692-702 - PubMed
  20. J Exp Bot. 2010 Aug;61(13):3615-25 - PubMed
  21. New Phytol. 2011 Aug;191(3):662-77 - PubMed
  22. Front Plant Sci. 2016 Jul 12;7:970 - PubMed
  23. BMC Plant Biol. 2014 Dec 19;14:370 - PubMed
  24. Plant Physiol. 2005 Sep;139(1):341-52 - PubMed
  25. J Exp Bot. 2015 Sep;66(19):5739-52 - PubMed
  26. Tree Physiol. 2005 Apr;25(4):395-401 - PubMed
  27. J Exp Bot. 2009;60(3):853-67 - PubMed
  28. PLoS One. 2013 Dec 06;8(12):e80818 - PubMed
  29. J Agric Food Chem. 2016 Jun 8;64(22):4487-96 - PubMed
  30. Plant Cell. 2010 Aug;22(8):2856-71 - PubMed
  31. PLoS One. 2013 Nov 11;8(11):e78860 - PubMed
  32. FEBS Lett. 2006 Feb 13;580(4):1112-22 - PubMed
  33. Food Chem. 2013 Aug 15;139(1-4):893-901 - PubMed
  34. PLoS One. 2013;8(4):e60422 - PubMed
  35. Front Plant Sci. 2016 Nov 08;7:1653 - PubMed
  36. Plant Physiol. 2016 Mar;170(3):1235-54 - PubMed
  37. FEBS Lett. 2003 Oct 23;553(3):370-6 - PubMed
  38. Plant Physiol. 1997 Nov;115(3):1155-1161 - PubMed
  39. BMC Plant Biol. 2011 Nov 02;11:149 - PubMed
  40. Plant J. 2005 Feb;41(3):451-63 - PubMed
  41. PLoS One. 2013 Apr 16;8(4):e62206 - PubMed
  42. Trends Genet. 2003 Jul;19(7):409-13 - PubMed
  43. Phytochemistry. 2014 Dec;108:157-70 - PubMed
  44. BMC Plant Biol. 2013 Feb 22;13:30 - PubMed
  45. Plant Physiol. 2010 Nov;154(3):1439-59 - PubMed
  46. J Exp Bot. 2014 Oct;65(19):5527-34 - PubMed
  47. Genome Biol. 2013 Jun 07;14(6):119 - PubMed
  48. Nucleic Acids Res. 2002 May 1;30(9):e36 - PubMed
  49. Plant Cell. 2003 Feb;15(2):533-43 - PubMed
  50. BMC Plant Biol. 2016 Mar 21;16:67 - PubMed
  51. J Agric Food Chem. 2011 May 11;59(9):4637-43 - PubMed
  52. J Exp Bot. 2014 Aug;65(16):4543-59 - PubMed
  53. Plant Cell Physiol. 2013 Jun;54(6):817-26 - PubMed
  54. J Exp Bot. 2017 Mar 1;68(6):1303-1321 - PubMed
  55. Plant Cell Rep. 2013 Feb;32(2):183-93 - PubMed
  56. Front Plant Sci. 2016 Feb 09;7:69 - PubMed
  57. Molecules. 2015 May 21;20(5):9326-43 - PubMed
  58. Phytochemistry. 2013 Dec;96:148-57 - PubMed
  59. Genome Biol. 2013 Jun 07;14(6):r54 - PubMed
  60. BMC Plant Biol. 2015 Aug 07;15:191 - PubMed
  61. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2355-60 - PubMed

Publication Types