Display options
Share it on

Syst Synth Biol. 2015 Dec;9(4):159-177. doi: 10.1007/s11693-015-9183-9. Epub 2015 Oct 13.

Exploring the differences in metabolic behavior of astrocyte and glioblastoma: a flux balance analysis approach.

Systems and synthetic biology

Rupa Bhowmick, Abhishek Subramanian, Ram Rup Sarkar

Affiliations

  1. Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India.
  2. Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Campus, Pune, 411008 India.

PMID: 28392849 PMCID: PMC5383796 DOI: 10.1007/s11693-015-9183-9

Abstract

Brain cancers demonstrate a complex metabolic behavior so as to adapt the external hypoxic environment and internal stress generated by reactive oxygen species. To survive in these stringent conditions, glioblastoma cells develop an antagonistic metabolic phenotype as compared to their predecessors, the astrocytes, thereby quenching the resources expected for nourishing the neurons. The complexity and cumulative effect of the large scale metabolic functioning of glioblastoma is mostly unexplored. In this study, we reconstruct a metabolic network comprising of pathways that are known to be deregulated in glioblastoma cells as compared to the astrocytes. The network, consisted of 147 genes encoding for enzymes performing 247 reactions distributed across five distinct model compartments, was then studied using constrained-based modeling approach by recreating the scenarios for astrocytes and glioblastoma, and validated with available experimental evidences. From our analysis, we predict that glycine requirement of the astrocytes are mostly fulfilled by the internal glycine-serine metabolism, whereas glioblastoma cells demand an external uptake of glycine to utilize it for glutathione production. Also, cystine and glucose were identified to be the major contributors to glioblastoma growth. We also proposed an extensive set of single and double lethal reaction knockouts, which were further perturbed to ascertain their role as probable chemotherapeutic targets. These simulation results suggested that, apart from targeting the reactions of central carbon metabolism, knockout of reactions belonging to the glycine-serine metabolism effectively reduce glioblastoma growth. The combinatorial targeting of glycine transporter with any other reaction belonging to glycine-serine metabolism proved lethal to glioblastoma growth.

Keywords: Astrocyte; Cystine; Glioblastoma; Glycine; Metabolic demand reaction; Mitochondrial ATP synthesis

References

  1. J Neurosci. 1999 Dec 15;19(24):10767-77 - PubMed
  2. J Theor Biol. 2001 Nov 7;213(1):73-88 - PubMed
  3. J Neurochem. 1995 Mar;64(3):1026-33 - PubMed
  4. Science. 1956 Feb 24;123(3191):309-14 - PubMed
  5. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10625-9 - PubMed
  6. Cancer Res. 2014 Feb 1;74(3):787-96 - PubMed
  7. Nucleic Acids Res. 2000 Jan 1;28(1):304-5 - PubMed
  8. Cancer Res. 2013 Jun 1;73(11):3225-34 - PubMed
  9. J Neurooncol. 2005 Sep;74(2):123-33 - PubMed
  10. Oncotarget. 2010 Nov;1(7):552-62 - PubMed
  11. FEBS Lett. 2000 Sep 1;480(2-3):261-4 - PubMed
  12. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7 - PubMed
  13. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4113-8 - PubMed
  14. Mol Cancer. 2013 Nov 20;12(1):144 - PubMed
  15. Glia. 2012 Jan;60(1):147-58 - PubMed
  16. J Neurosci. 2005 Aug 3;25(31):7101-10 - PubMed
  17. Syst Synth Biol. 2014 Mar;8(1):73-81 - PubMed
  18. J Biol Chem. 2006 Feb 17;281(7):3841-55 - PubMed
  19. Trends Neurosci. 2004 Dec;27(12):735-43 - PubMed
  20. J Neurochem. 1996 Dec;67(6):2566-72 - PubMed
  21. J Neurooncol. 2013 Apr;112(2):153-63 - PubMed
  22. Syst Synth Biol. 2013 Dec;7(4):221-7 - PubMed
  23. Nature. 2001 May 3;411(6833):41-2 - PubMed
  24. Cancer Res. 2012 Nov 15;72(22):5878-88 - PubMed
  25. Toxicol Pathol. 2000 Jan-Feb;28(1):164-70 - PubMed
  26. Neurosurg Rev. 2008 Jul;31(3):263-9 - PubMed
  27. Brief Bioinform. 2006 Jun;7(2):140-50 - PubMed
  28. Nat Protoc. 2011 Aug 04;6(9):1290-307 - PubMed
  29. Biochem Pharmacol. 2010 Nov 15;80(10):1517-27 - PubMed
  30. J Biol Chem. 2011 Sep 16;286(37):32843-53 - PubMed
  31. J Neurochem. 1998 Feb;70(2):835-40 - PubMed
  32. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 - PubMed
  33. J Neurochem. 2009 May;109 Suppl 1:55-62 - PubMed
  34. Acta Neurochir (Wien). 1978;42(1-2):5-32 - PubMed
  35. Open Med Chem J. 2010 May 27;4:10-9 - PubMed
  36. J Neurosci Res. 1999 Jul 15;57(2):255-60 - PubMed
  37. Oncogene. 2006 Aug 7;25(34):4633-46 - PubMed
  38. J Neuropathol Exp Neurol. 1997 Jun;56(6):704-13 - PubMed
  39. PLoS One. 2010 Aug 25;5(8):e12383 - PubMed
  40. J Biol Chem. 2010 Nov 26;285(48):37716-24 - PubMed
  41. Science. 2009 May 22;324(5930):1029-33 - PubMed
  42. Neuron. 2000 Feb;25(2):373-83 - PubMed
  43. MAGMA. 2009 Feb;22(1):33-41 - PubMed
  44. Br J Cancer. 1996 Sep;74(6):839-45 - PubMed
  45. Nat Biotechnol. 2009 Jul;27(7):659-66 - PubMed
  46. Brain Res. 1986 Nov 5;397(1):108-16 - PubMed
  47. J Neurooncol. 2014 Aug;119(1):79-89 - PubMed
  48. J Neurol Sci. 2003 Dec 15;216(1):1-10 - PubMed
  49. Cancer Res. 2000 Oct 15;60(20):5879-86 - PubMed
  50. Front Cell Neurosci. 2013 Oct 11;7:179 - PubMed
  51. Oncogene. 2006 Aug 7;25(34):4663-74 - PubMed
  52. Cell Prolif. 1995 Jan;28(1):17-31 - PubMed
  53. J Neurochem. 1978 May;30(5):955-63 - PubMed
  54. Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 - PubMed
  55. Nucleic Acids Res. 2014 Jan;42(Database issue):D191-8 - PubMed

Publication Types