Display options
Share it on

JCI Insight. 2017 Apr 20;2(8). doi: 10.1172/jci.insight.87455. eCollection 2017 Apr 20.

Therapeutic inhibition of soluble brain TNF promotes remyelination by increasing myelin phagocytosis by microglia.

JCI insight

Maria Karamita, Christopher Barnum, Wiebke Möbius, Malú G Tansey, David E Szymkowski, Hans Lassmann, Lesley Probert

Affiliations

  1. Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece.
  2. Department of Physiology, Emory University, Atlanta, Georgia, USA.
  3. Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Goettingen, Germany.
  4. Xencor, Monrovia, California, USA.
  5. Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria.

PMID: 28422748 PMCID: PMC5396518 DOI: 10.1172/jci.insight.87455

Abstract

Multiple sclerosis (MS) is an inflammatory CNS demyelinating disease in which remyelination largely fails. Transmembrane TNF (tmTNF) and TNF receptor 2 are important for remyelination in experimental MS models, but it is unknown whether soluble TNF (solTNF), a major proinflammatory factor, is involved in regeneration processes. Here, we investigated the specific contribution of solTNF to demyelination and remyelination in the cuprizone model. Treatment with XPro1595, a selective inhibitor of solTNF that crosses the intact blood-brain barrier (BBB), in cuprizone-fed mice did not prevent toxin-induced oligodendrocyte loss and demyelination, but it permitted profound early remyelination due to improved phagocytosis of myelin debris by CNS macrophages and prevented disease-associated decline in motor performance. The beneficial effects of XPro1595 were absent in TNF-deficient mice and replicated in tmTNF-knockin mice, showing that tmTNF is sufficient for the maintenance of myelin and neuroprotection. These findings demonstrate that solTNF inhibits remyelination and repair in a cuprizone demyelination model and suggest that local production of solTNF in the CNS might be one reason why remyelination fails in MS. These findings also suggest that disinhibition of remyelination by selective inhibitors of solTNF that cross the BBB might represent a promising approach for treatment in progressive MS.

Keywords: Autoimmunity; Therapeutics

References

  1. Cell Mol Neurobiol. 2013 Nov;33(8):1087-98 - PubMed
  2. Ann N Y Acad Sci. 1988;540:568-70 - PubMed
  3. Brain. 2010 Oct;133(10):2983-98 - PubMed
  4. Nature. 2011 Aug 10;476(7359):214-9 - PubMed
  5. J Neurosci. 2006 Jan 4;26(1):328-32 - PubMed
  6. Nat Rev Drug Discov. 2008 Nov;7(11):909-25 - PubMed
  7. Glia. 2001 Sep;35(3):204-12 - PubMed
  8. J Neurochem. 1973 Oct;21(4):749-57 - PubMed
  9. Glia. 2015 Apr;63(4):549-66 - PubMed
  10. J Neurosci Res. 2001 Dec 15;66(6):1173-8 - PubMed
  11. Neurobiol Dis. 2009 Jul;35(1):24-31 - PubMed
  12. J Neurosci. 2012 Jun 13;32(24):8284-92 - PubMed
  13. J Neuroinflammation. 2014 Dec 12;11:203 - PubMed
  14. Science. 2003 Sep 26;301(5641):1895-8 - PubMed
  15. J Exp Med. 1996 Oct 1;184(4):1397-411 - PubMed
  16. J Biotechnol. 2010 Mar;146(1-2):84-91 - PubMed
  17. J Neurol. 2008 Mar;255 Suppl 1:19-25 - PubMed
  18. J Neuroimmunol. 2006 Jun;175(1-2):69-76 - PubMed
  19. Neurobiol Dis. 2005 Feb;18(1):166-75 - PubMed
  20. Ann Pharmacother. 1997 Nov;31(11):1335-8 - PubMed
  21. J Biol Chem. 2004 Jul 30;279(31):32869-81 - PubMed
  22. J Neurol Sci. 1987 Apr;78(2):125-37 - PubMed
  23. Brain. 2006 Dec;129(Pt 12):3165-72 - PubMed
  24. J Neurosci. 2001 May 1;21(9):3024-33 - PubMed
  25. Am J Pathol. 2007 May;170(5):1713-24 - PubMed
  26. J Neurosci. 2009 Oct 28;29(43):13435-44 - PubMed
  27. Ann Neurol. 1995 Nov;38(5):788-96 - PubMed
  28. Neurobiol Dis. 2010 Feb;37(2):362-9 - PubMed
  29. Neurosci Lett. 1994 Jan 3;165(1-2):208-10 - PubMed
  30. Mol Cell Neurosci. 1998 Nov;12(4-5):220-7 - PubMed
  31. Lancet Neurol. 2015 Feb;14(2):183-93 - PubMed
  32. Dev Biol. 1999 Dec 1;216(1):359-68 - PubMed
  33. J Immunol. 2001 Sep 1;167(5):2964-71 - PubMed
  34. J Immunol. 2014 May 1;192(9):4122-33 - PubMed
  35. Nat Rev Neurosci. 2008 Nov;9(11):839-55 - PubMed
  36. J Neurosci. 2001 Sep 15;21(18):7046-52 - PubMed
  37. J Neuroimmunol. 1998 Dec 1;92(1-2):38-49 - PubMed
  38. Brain. 2011 Sep;134(Pt 9):2736-54 - PubMed
  39. J Immunol. 2007 Aug 1;179(3):1872-83 - PubMed
  40. J Cell Biol. 1963 Apr;17:208-12 - PubMed
  41. Neurosci Lett. 2009 Apr 3;453(2):120-5 - PubMed
  42. Nat Immunol. 2014 Dec;15(12 ):1099-100 - PubMed
  43. Autophagy. 2016 Nov;12 (11):2230-2247 - PubMed
  44. Ann Neurol. 1993 Feb;33(2):137-51 - PubMed
  45. Nat Neurosci. 2001 Nov;4(11):1116-22 - PubMed
  46. Brain Pathol. 2001 Jan;11(1):107-16 - PubMed
  47. J Exp Med. 1990 Oct 1;172(4):1025-33 - PubMed
  48. PLoS One. 2013;8(1):e54590 - PubMed
  49. J Exp Med. 2014 Jul 28;211(8):1533-49 - PubMed
  50. Brain. 2005 Mar;128(Pt 3):528-39 - PubMed
  51. J Neurosci Res. 2000 Aug 1;61(3):251-62 - PubMed
  52. Biochem Biophys Res Commun. 2013 Oct 18;440(2):336-41 - PubMed
  53. Cell. 1995 Dec 1;83(5):793-802 - PubMed
  54. Immunity. 2001 Oct;15(4):533-43 - PubMed
  55. Am J Pathol. 1998 Sep;153(3):801-13 - PubMed
  56. Brain. 2011 Sep;134(Pt 9):2722-35 - PubMed
  57. J Neurochem. 2002 Jul;82(1):126-36 - PubMed
  58. J Parkinsons Dis. 2014;4(3):349-60 - PubMed
  59. J Neurosci. 2016 May 4;36(18):5128-43 - PubMed
  60. Neuron. 2014 Sep 3;83(5):1098-116 - PubMed
  61. Neuroscience. 2015 Aug 27;302:2-22 - PubMed
  62. Nature. 2015 Feb 19;518(7539):337-43 - PubMed
  63. Nat Neurosci. 2010 Mar;13(3):319-26 - PubMed
  64. J Neurosci. 2006 Dec 6;26(49):12672-81 - PubMed
  65. PLoS One. 2012;7(2):e32636 - PubMed
  66. Glia. 2000 Mar;30(1):92-104 - PubMed

Publication Types