Display options
Share it on

JCI Insight. 2017 Apr 20;2(8). doi: 10.1172/jci.insight.90547. eCollection 2017 Apr 20.

β-catenin and PI3Kδ inhibition expands precursor Th17 cells with heightened stemness and antitumor activity.

JCI insight

Kinga Majchrzak, Michelle H Nelson, Jacob S Bowers, Stefanie R Bailey, Megan M Wyatt, John M Wrangle, Mark P Rubinstein, Juan C Varela, Zihai Li, Richard A Himes, Sherine Sl Chan, Chrystal M Paulos

Affiliations

  1. Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
  2. Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
  3. Department of Surgery.
  4. Department of Dermatology and Dermatologic Surgery, and.
  5. Department of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina, USA.
  6. Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina, USA.
  7. Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.
  8. Neuroene Therapeutics, Mount Pleasant, South Carolina, USA.

PMID: 28422756 PMCID: PMC5396523 DOI: 10.1172/jci.insight.90547

Abstract

ICOS costimulation generates Th17 cells with durable memory responses to tumor. Herein, we found that ICOS induces PI3K/p110δ/Akt and Wnt/β-catenin pathways in Th17 cells. Coinhibiting PI3Kδ and β-catenin altered the biological fate of Th17 cells. Th17 cells inhibited of both pathways expressed less RORγt, which, in turn, reduced their ability to secrete IL-17. Unexpectedly, these cells were more effective (than uninhibited cells) at regressing tumor when infused into mice, leading to long-term curative responses. PI3Kδ inhibition expanded precursor Th17 cells with a central memory phenotype that expressed nominal regulatory properties (low FoxP3), while β-catenin inhibition enhanced Th17 multifunctionality in vivo. Remarkably, upon TCR restimulation, RORγt and IL-17 rebounded in Th17 cells treated with PI3Kδ and β-catenin inhibitors. Moreover, these cells regained β-catenin, Tcf7, and Akt expression, licensing them to secrete heightened IL-2, persist, and eradicate solid tumors without help from endogenous NK and CD8 T cells. This finding shines a light on ways to repurpose FDA-approved drugs to augment T cell-based cancer immunotherapies.

Keywords: Immunology; Oncology

References

  1. J Immunol. 2008 Nov 1;181(9):5948-55 - PubMed
  2. J Exp Med. 2005 Oct 3;202(7):907-12 - PubMed
  3. Am J Respir Crit Care Med. 2011 Jul 1;184(1):37-49 - PubMed
  4. Cancer Res. 2015 Jan 15;75(2):296-305 - PubMed
  5. J Exp Med. 2010 Mar 15;207(3):637-50 - PubMed
  6. Sci Transl Med. 2011 Oct 12;3(104):104ra100 - PubMed
  7. Clin Cancer Res. 2010 Oct 1;16(19):4695-701 - PubMed
  8. Blood. 2010 Mar 18;115(11):2203-13 - PubMed
  9. Cell Rep. 2016 Nov 8;17 (7):1773-1782 - PubMed
  10. Blood. 2014 Nov 27;124(23):3490-500 - PubMed
  11. J Immunol. 2015 Feb 15;194(4):1737-47 - PubMed
  12. PLoS Genet. 2012;8(3):e1002565 - PubMed
  13. J Clin Invest. 2008 Jan;118(1):294-305 - PubMed
  14. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2729-34 - PubMed
  15. Cell Signal. 2011 Apr;23(4):603-8 - PubMed
  16. Immunity. 2009 Nov 20;31(5):787-98 - PubMed
  17. Clin Cancer Res. 2010 May 15;16(10 ):2861-71 - PubMed
  18. Immunity. 2012 Jan 27;36(1):68-78 - PubMed
  19. Immunity. 2014 Jul 17;41(1):116-26 - PubMed
  20. J Clin Invest. 2005 Jun;115(6):1616-26 - PubMed
  21. Science. 2016 Dec 2;354(6316):1160-1165 - PubMed
  22. Cancer Immunol Immunother. 2016 Mar;65(3):247-59 - PubMed
  23. J Biol Chem. 1994 Feb 18;269(7):5241-8 - PubMed
  24. J Exp Med. 2014 Apr 7;211(4):715-25 - PubMed
  25. Cancer Immunol Res. 2014 Feb;2(2):167-76 - PubMed
  26. J Immunother. 2012 Nov-Dec;35(9):651-60 - PubMed
  27. Genes Dev. 2011 Sep 15;25(18):1928-42 - PubMed
  28. J Child Adolesc Psychopharmacol. 2017 Feb;27(1):108-109 - PubMed
  29. Science. 2016 Dec 2;354(6316):1165-1169 - PubMed
  30. Nature. 2014 Jun 19;510(7505):407-11 - PubMed
  31. Sci Transl Med. 2010 Oct 27;2(55):55ra78 - PubMed
  32. Cell. 2012 Oct 12;151(2):289-303 - PubMed
  33. Blood. 2014 May 29;123(22):3390-7 - PubMed
  34. Oncoimmunology. 2015 Feb 3;4(5):e1005448 - PubMed
  35. Blood. 2014 Jul 24;124(4):476-7 - PubMed
  36. Nat Immunol. 2005 Nov;6(11):1133-41 - PubMed
  37. Brain Behav Immun. 2015 Jan;43:172-83 - PubMed
  38. Blood. 2008 Jul 15;112(2):362-73 - PubMed
  39. Science. 2010 Mar 26;327(5973):1650-3 - PubMed
  40. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9571-6 - PubMed
  41. Crit Rev Eukaryot Gene Expr. 2011;21(3):207-36 - PubMed
  42. J Exp Med. 2010 Mar 15;207(3):651-67 - PubMed
  43. Blood. 2011 Jan 13;117(2):591-4 - PubMed
  44. J Hematol Oncol. 2013 May 09;6:33 - PubMed
  45. Nat Med. 2011 Sep 18;17(10):1290-7 - PubMed
  46. Mol Cancer Ther. 2003 Jun;2(6):509-16 - PubMed
  47. Annu Rev Immunol. 2004;22:745-63 - PubMed
  48. Immunity. 2011 Dec 23;35(6):972-85 - PubMed
  49. Blood. 2014 Aug 14;124(7):1070-80 - PubMed
  50. J Exp Med. 2014 Aug 25;211(9):1857-74 - PubMed
  51. Nat Immunol. 2009 Feb;10(2):167-75 - PubMed
  52. Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18460-5 - PubMed
  53. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14987-92 - PubMed
  54. J Clin Invest. 2007 Aug;117(8):2197-204 - PubMed

Publication Types

Grant support