Display options
Share it on

JCI Insight. 2017 Apr 20;2(8). doi: 10.1172/jci.insight.92428. eCollection 2017 Apr 20.

Cross-reactive dengue human monoclonal antibody prevents severe pathologies and death from Zika virus infections.

JCI insight

Yiu-Wing Kam, Cheryl Yi-Pin Lee, Teck-Hui Teo, Shanshan W Howland, Siti Naqiah Amrun, Fok-Moon Lum, Peter See, Nicholas Qing-Rong Kng, Roland G Huber, Mei-Hui Xu, Heng-Liang Tan, Andre Choo, Sebastian Maurer-Stroh, Florent Ginhoux, Katja Fink, Cheng-I Wang, Lisa Fp Ng, Laurent Rénia

Affiliations

  1. Singapore Immunology Network, Agency for Technology and Research (A*STAR), Biopolis, Singapore.
  2. NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
  3. Bioinformatics Institute.
  4. Bioprocessing Technology Institute, A*STAR, Biopolis, Singapore.
  5. Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.
  6. School of Biological Sciences, Nanyang Technological University, Singapore.
  7. Department of Biological Sciences, National University of Singapore, Singapore.
  8. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
  9. Institute of Infection and Global Health, University of Liverpool, United Kingdom.

PMID: 28422757 PMCID: PMC5396524 DOI: 10.1172/jci.insight.92428

Abstract

Zika virus (ZIKV) infections have been linked with neurological complications and congenital Zika syndrome. Given the high level of homology between ZIKV and the related flavivirus dengue virus (DENV), we investigated the level of cross-reactivity with ZIKV using a panel of DENV human mAbs. A majority of the mAbs showed binding to ZIKV virions, with several exhibiting neutralizing capacities against ZIKV in vitro. Three of the best ZIKV-neutralizing mAbs were found to recognize diverse epitopes on the envelope (E) glycoprotein: the highly conserved fusion-loop peptide, a conformation-specific epitope on the E monomer, and a quaternary epitope on the virion surface. The most potent ZIKV-neutralizing mAb (SIgN-3C) was assessed in 2 type I interferon receptor-deficient (IFNAR-/-) mouse models of ZIKV infection. Treatment of adult nonpregnant mice with SIgN-3C rescued mice from virus-induced weight loss and mortality. The SIgN-3C variant with Leu-to-Ala mutations in the Fc region (SIgN-3C-LALA) did not induce antibody-dependent enhancement (ADE) in vitro but provided similar levels of protection in vivo. In pregnant ZIKV-infected IFNAR-/- mice, treatment with SIgN-3C or SIgN-3C-LALA significantly reduced viral load in the fetal organs and placenta and abrogated virus-induced fetal growth retardation. Therefore, SIgN-3C-LALA holds promise as a ZIKV prophylactic and therapeutic agent.

Keywords: Infectious disease

References

  1. J Virol. 2015 Jan;89(1):120-8 - PubMed
  2. F1000Res. 2016 Feb 18;5:190 - PubMed
  3. Expert Rev Vaccines. 2016;15(4):467-82 - PubMed
  4. J Infect Dis. 2011 Nov 15;204(10):1514-22 - PubMed
  5. Proteins. 2002 May 15;47(3):393-402 - PubMed
  6. Nat Commun. 2015 Feb 20;6:6341 - PubMed
  7. Emerg Infect Dis. 2015 Dec;21(12):2274-6 - PubMed
  8. Proc Natl Acad Sci U S A. 2007 May 29;104(22):9422-7 - PubMed
  9. Cell Host Microbe. 2016 May 11;19(5):696-704 - PubMed
  10. mBio. 2016 Jul 19;7(4): - PubMed
  11. Cell. 2016 May 19;165(5):1081-1091 - PubMed
  12. Euro Surveill. 2014 Mar 06;19(9): - PubMed
  13. J Infect Dis. 1973 Jul;128(1):15-22 - PubMed
  14. J Virol. 2001 Dec;75(24):12161-8 - PubMed
  15. Euro Surveill. 2014 Oct 16;19(41): - PubMed
  16. Clin Microbiol Infect. 2014 Oct;20(10):O595-6 - PubMed
  17. Arch Virol. 2013 Jul;158(7):1445-59 - PubMed
  18. EMBO Mol Med. 2012 Apr;4(4):330-43 - PubMed
  19. N Engl J Med. 2016 Mar 10;374(10):951-8 - PubMed
  20. Trans R Soc Trop Med Hyg. 1952 Sep;46(5):509-20 - PubMed
  21. Am J Trop Med Hyg. 2016 Oct 5;95(4):741-745 - PubMed
  22. Nature. 2016 Aug 4;536(7614):48-53 - PubMed
  23. J Immunol. 2012 Dec 15;189(12):5877-85 - PubMed
  24. EMBO Mol Med. 2013 Jul;5(7):984-99 - PubMed
  25. N Engl J Med. 2009 Jun 11;360(24):2536-43 - PubMed
  26. Nature. 2016 Apr 19;533(7603):425-8 - PubMed
  27. Cell Host Microbe. 2016 May 11;19(5):720-30 - PubMed
  28. J Clin Invest. 2012 Dec;122(12):4447-60 - PubMed
  29. Am J Trop Med Hyg. 2006 Dec;75(6):1113-7 - PubMed
  30. Sci Transl Med. 2016 Dec 14;8(369):369ra179 - PubMed
  31. Emerg Infect Dis. 2014 Jun;20(6):1085-6 - PubMed
  32. MMWR Morb Mortal Wkly Rep. 2016 Jan 29;65(3):59-62 - PubMed
  33. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 - PubMed
  34. Emerg Infect Dis. 2008 Aug;14(8):1232-9 - PubMed
  35. J Virol. 2015 Sep;89(17):8880-96 - PubMed
  36. Lancet. 2016 Apr 9;387(10027):1531-1539 - PubMed
  37. Nat Immunol. 2016 Sep;17(9):1102-8 - PubMed
  38. Cell Res. 2016 Jun;26(6):645-54 - PubMed
  39. PLoS Pathog. 2010 Feb 12;6(2):e1000790 - PubMed
  40. Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7852-7 - PubMed
  41. J Med Virol. 2012 Sep;84(9):1501-5 - PubMed
  42. Nature. 2016 Dec 15;540(7633):443-447 - PubMed
  43. Viruses. 2011 Dec;3(12):2374-95 - PubMed
  44. N Engl J Med. 2016 Jun 2;374(22):2142-51 - PubMed
  45. Cell Host Microbe. 2010 Sep 16;8(3):271-83 - PubMed
  46. Adv Virus Res. 2003;60:421-67 - PubMed
  47. MMWR Morb Mortal Wkly Rep. 2016 Jan 29;65(3):55-8 - PubMed
  48. NPJ Vaccines. 2017 Jan 23;2:2 - PubMed
  49. Trans R Soc Trop Med Hyg. 1964 Jul;58:335-8 - PubMed
  50. Nature. 2016 May 11;534(7606):267-71 - PubMed
  51. Microbiol Spectr. 2014 Dec;2(6): - PubMed
  52. Cell. 2016 Aug 11;166(4):1016-1027 - PubMed
  53. Emerg Infect Dis. 2015 Oct;21(10):1885-6 - PubMed
  54. Science. 2016 Aug 19;353(6301):823-6 - PubMed
  55. Lancet. 2016 Jan 16;387(10015):227-8 - PubMed
  56. Cell. 2016 Aug 25;166(5):1247-1256.e4 - PubMed

Publication Types