Display options
Share it on

Proc Natl Acad Sci U S A. 2017 May 23;114(21):5378-5383. doi: 10.1073/pnas.1703416114. Epub 2017 May 08.

Anomalous thermal diffusivity in underdoped YBa.

Proceedings of the National Academy of Sciences of the United States of America

Jiecheng Zhang, Eli M Levenson-Falk, B J Ramshaw, D A Bonn, Ruixing Liang, W N Hardy, Sean A Hartnoll, Aharon Kapitulnik

Affiliations

  1. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305.
  2. Department of Physics, Stanford University, Stanford, CA 94305.
  3. Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853.
  4. Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1.
  5. Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8.
  6. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305; [email protected].
  7. Department of Applied Physics, Stanford University, Stanford, CA 94305.

PMID: 28484003 PMCID: PMC5448191 DOI: 10.1073/pnas.1703416114

Abstract

The thermal diffusivity in the [Formula: see text] plane of underdoped YBCO crystals is measured by means of a local optical technique in the temperature range of 25-300 K. The phase delay between a point heat source and a set of detection points around it allows for high-resolution measurement of the thermal diffusivity and its in-plane anisotropy. Although the magnitude of the diffusivity may suggest that it originates from phonons, its anisotropy is comparable with reported values of the electrical resistivity anisotropy. Furthermore, the anisotropy drops sharply below the charge order transition, again similar to the electrical resistivity anisotropy. Both of these observations suggest that the thermal diffusivity has pronounced electronic as well as phononic character. At the same time, the small electrical and thermal conductivities at high temperatures imply that neither well-defined electron nor phonon quasiparticles are present in this material. We interpret our results through a strongly interacting incoherent electron-phonon "soup" picture characterized by a diffusion constant [Formula: see text], where [Formula: see text] is the soup velocity, and scattering of both electrons and phonons saturates a quantum thermal relaxation time [Formula: see text].

Keywords: bad metals; electron–phonon; thermal diffusivity

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Phys Rev Lett. 2013 Feb 22;110(8):086401 - PubMed
  2. Phys Rev Lett. 2001 May 21;86(21):4907-10 - PubMed
  3. Phys Rev B Condens Matter. 1993 Mar 1;47(10):6065-6068 - PubMed
  4. Phys Rev B Condens Matter. 1993 Mar 1;47(10):6154-6156 - PubMed
  5. Phys Rev B Condens Matter. 1994 Apr 1;49(14):9862-9873 - PubMed
  6. Nature. 2001 Aug 2;412(6846):510-4 - PubMed
  7. Nature. 2013 Jun 6;498(7452):75-7 - PubMed
  8. Phys Rev Lett. 1995 Dec 18;75(25):4662-4665 - PubMed
  9. Phys Rev B Condens Matter. 1994 Nov 1;50(18):13125-13131 - PubMed
  10. Phys Rev B Condens Matter. 1994 Apr 1;49(13):9073-9079 - PubMed
  11. Phys Rev B Condens Matter. 1990 Jun 1;41(16):11237-11259 - PubMed
  12. Nature. 2003 Sep 18;425(6955):271-4 - PubMed
  13. Phys Rev Lett. 2012 Oct 19;109(16):167001 - PubMed
  14. Phys Rev Lett. 2000 Mar 6;84(10):2219-22 - PubMed
  15. Science. 2012 Aug 17;337(6096):821-5 - PubMed
  16. Phys Rev Lett. 2002 Apr 1;88(13):137005 - PubMed
  17. Phys Rev B Condens Matter. 1990 Oct 1;42(10):6342-6362 - PubMed
  18. Phys Rev Lett. 1995 Apr 17;74(16):3253-3256 - PubMed
  19. Sci Rep. 2015 Nov 03;5:16042 - PubMed
  20. Science. 2013 Feb 15;339(6121):804-7 - PubMed
  21. Phys Rev Lett. 2016 Aug 26;117(9):091601 - PubMed
  22. Phys Rev B Condens Matter. 1996 Nov 1;54(18):13261-13268 - PubMed
  23. Phys Rev B Condens Matter. 1992 Mar 1;45(10):5525-5529 - PubMed
  24. Nature. 2004 Jul 29;430(6999):512-3 - PubMed

Publication Types