Display options
Share it on

ACS Nano. 2017 Jun 27;11(6):5325-5331. doi: 10.1021/acsnano.7b00570. Epub 2017 Apr 21.

Distinguishing Lead and Molecule States in Graphene-Based Single-Electron Transistors.

ACS nano

Pascal Gehring, Jakub K Sowa, Jonathan Cremers, Qingqing Wu, Hatef Sadeghi, Yuewen Sheng, Jamie H Warner, Colin J Lambert, G Andrew D Briggs, Jan A Mol

Affiliations

  1. Department of Materials, University of Oxford , 16 Parks Road, Oxford OX1 3PH, U.K.
  2. Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Mansfield Road, Oxford OX1 3TA, U.K.
  3. Department of Physics, Lancaster University , Bailrigg, Lancaster LA1 4YB, U.K.

PMID: 28423272 PMCID: PMC5492215 DOI: 10.1021/acsnano.7b00570

Abstract

Graphene provides a two-dimensional platform for contacting individual molecules, which enables transport spectroscopy of molecular orbital, spin, and vibrational states. Here we report single-electron tunneling through a molecule that has been anchored to two graphene leads. Quantum interference within the graphene leads gives rise to an energy-dependent transmission and fluctuations in the sequential tunnel-rates. The lead states are electrostatically tuned by a global back-gate, resulting in a distinct pattern of varying intensity in the measured conductance maps. This pattern could potentially obscure transport features that are intrinsic to the molecule under investigation. Using ensemble averaged magneto-conductance measurements, lead and molecule states are disentangled, enabling spectroscopic investigation of the single molecule.

Keywords: graphene; molecular electronics; nanoelectrodes; single-electron tunneling

References

  1. Nano Lett. 2011 Nov 9;11(11):4607-11 - PubMed
  2. Acc Chem Res. 2015 Sep 15;48(9):2565-75 - PubMed
  3. Sci Rep. 2016 Sep 20;6:33686 - PubMed
  4. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2658-63 - PubMed
  5. Phys Rev Lett. 2005 Jul 8;95(2):026801 - PubMed
  6. Nano Lett. 2016 Jan 13;16(1):170-6 - PubMed
  7. Chem Soc Rev. 2015 Feb 21;44(4):875-88 - PubMed
  8. Nat Nanotechnol. 2010 Jul;5(7):502-5 - PubMed
  9. Nanoscale. 2014 Jul 7;6(13):7249-54 - PubMed
  10. Phys Rev B Condens Matter. 1987 Jan 15;35(3):1039-1070 - PubMed
  11. Phys Chem Chem Phys. 2014 Oct 14;16(38):20398-401 - PubMed
  12. J Chem Phys. 2014 Feb 7;140(5):054708 - PubMed
  13. Nanotechnology. 2010 Jul 9;21(27):274018 - PubMed
  14. Phys Rev Lett. 2014 Sep 12;113(11):116601 - PubMed
  15. Nano Lett. 2016 Jul 13;16(7):4210-6 - PubMed
  16. Nano Lett. 2016 Jun 8;16(6):3442-7 - PubMed
  17. Nanoscale. 2015 Aug 21;7(31):13181-5 - PubMed
  18. Chem Soc Rev. 2015 Feb 21;44(4):902-19 - PubMed
  19. Dalton Trans. 2016 Nov 14;45(42):16570-16574 - PubMed
  20. Nano Lett. 2015 May 13;15(5):3512-8 - PubMed
  21. J Am Chem Soc. 2015 Sep 9;137(35):11425-31 - PubMed
  22. Nat Nanotechnol. 2015 Sep;10(9):761-4 - PubMed
  23. Sci Rep. 2012;2:595 - PubMed

Publication Types

Grant support