Display options
Share it on

Opt Lett. 2017 May 01;42(9):1816-1819. doi: 10.1364/OL.42.001816.

Laser waveform control of extreme ultraviolet high harmonics from solids.

Optics letters

Yong Sing You, Mengxi Wu, Yanchun Yin, Andrew Chew, Xiaoming Ren, Shima Gholam-Mirzaei, Dana A Browne, Michael Chini, Zenghu Chang, Kenneth J Schafer, Mette B Gaarde, Shambhu Ghimire

PMID: 28454168 DOI: 10.1364/OL.42.001816

Abstract

Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

Publication Types