Display options
Share it on

Oncol Lett. 2017 Mar;13(3):1553-1562. doi: 10.3892/ol.2017.5672. Epub 2017 Feb 02.

A multi-shRNA vector enhances the silencing efficiency of exogenous and endogenous genes in human cells.

Oncology letters

Yanjie Weng, Ying Shi, Xi Xia, Wenjuan Zhou, Hongyan Wang, Changyu Wang

Affiliations

  1. Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.
  2. Department of Gynecology and Obstetrics, Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China.

PMID: 28454290 PMCID: PMC5403481 DOI: 10.3892/ol.2017.5672

Abstract

RNA interference (RNAi) is a powerful technology for suppressing gene function. In most studies, small interfering RNAs (siRNAs) consist of one short hairpin RNA (shRNA) and, therefore, are often unable to achieve loss-of-function of their target genes. In the current study, an RNAi vector containing three shRNAs under the control of three RNA polymerase III U6 promoters was constructed. RNAi vectors containing one or two shRNAs were generated for comparisons. A pilot study targeting exogenously expressed DsRed in the HEK293 cell line revealed promising effects and a high selectivity for the multi-shRNA RNAi vector. Akt2 is constitutively expressed in cultured SKOV3 human ovarian cancer cells, and the multi-shRNA RNAi vector showed a strong efficiency for downregulating the expression of Akt2 in these cells, with no apparent interferon response. In addition, the Akt2-3shRNA vector, containing three shRNAs targeting Akt2, showed the best effect of all the shRNA vectors in reversing paclitaxel-induced resistance in SKOV3 cells. This study developed a widely applicable resource for enhancing the efficiency of gene silencing and a novel technique for performing complex loss-of-function screens in mammalian cells.

Keywords: Akt2; DsRed; multi-site short hairpin RNA vector

References

  1. Nat Cell Biol. 2003 Sep;5(9):834-9 - PubMed
  2. Biotechniques. 2006 Jul;41(1):64-8 - PubMed
  3. Methods. 2002 Feb;26(2):199-213 - PubMed
  4. J Interferon Cytokine Res. 2007 Aug;27(8):653-64 - PubMed
  5. RNA. 2008 Sep;14(9):1834-44 - PubMed
  6. FEBS Lett. 2005 Oct 31;579(26):5996-6007 - PubMed
  7. Nature. 1998 Feb 19;391(6669):806-11 - PubMed
  8. EMBO Mol Med. 2015 Feb 17;7(4):450-63 - PubMed
  9. Nat Protoc. 2006;1(1):234-40 - PubMed
  10. Mol Cell Biochem. 2009 Jul;327(1-2):257-66 - PubMed
  11. Nat Methods. 2006 Sep;3(9):715-9 - PubMed
  12. Assay Drug Dev Technol. 2008 Feb;6(1):105-19 - PubMed
  13. Methods. 2009 Apr;47(4):298-303 - PubMed
  14. Methods. 2001 Dec;25(4):402-8 - PubMed
  15. Mol Ther. 2004 Sep;10(3):597-603 - PubMed
  16. Nat Genet. 2003 Mar;33(3):401-6 - PubMed
  17. RNA. 2006 Jul;12(7):1197-205 - PubMed
  18. Nat Protoc. 2009;4(9):1338-48 - PubMed
  19. Mol Cell Biol. 1992 Nov;12(11):5238-48 - PubMed
  20. Cancer Lett. 2008 Mar 8;261(1):108-19 - PubMed
  21. Nature. 2001 May 24;411(6836):494-8 - PubMed
  22. Adv Drug Deliv Rev. 2016 Sep 1;104:16-28 - PubMed
  23. Pharmacol Ther. 2005 Aug;107(2):222-39 - PubMed
  24. Biochem Soc Trans. 1997 May;25(2):509-13 - PubMed
  25. Curr Protoc Mol Biol. 2001 May;Chapter 1:Unit1.5 - PubMed
  26. Nature. 2004 Mar 25;428(6981):431-7 - PubMed
  27. Antiviral Res. 2010 Sep;87(3):307-17 - PubMed
  28. Exp Hematol. 2010 Sep;38(9):792-7 - PubMed
  29. Cancer Lett. 2009 Jan 18;273(2):257-65 - PubMed
  30. PLoS One. 2009 Sep 15;4(9):e7029 - PubMed
  31. Cell. 2006 Mar 24;124(6):1283-98 - PubMed
  32. BMC Biotechnol. 2006 Jun 21;6:28 - PubMed
  33. BMB Rep. 2008 May 31;41(5):358-62 - PubMed
  34. RNA. 2003 Apr;9(4):493-501 - PubMed
  35. Nat Biotechnol. 2008 Aug;26(8):933-40 - PubMed
  36. Methods Mol Biol. 2011;683:349-60 - PubMed

Publication Types