Display options
Share it on

Front Physiol. 2017 Apr 24;8:234. doi: 10.3389/fphys.2017.00234. eCollection 2017.

Influence of Joint Angle on Residual Force Enhancement in Human Plantar Flexors.

Frontiers in physiology

Atsuki Fukutani, Jun Misaki, Tadao Isaka

Affiliations

  1. Faculty of Kinesiology, University of CalgaryCalgary, AB, Canada.
  2. Japan Society for the Promotion of Science, Postdoctoral Fellowships for Research AbroadTokyo, Japan.
  3. Research Organization of Science and Technology, Ritsumeikan UniversityShiga, Japan.
  4. Graduate School of Sport and Health Science, Ritsumeikan UniversityShiga, Japan.
  5. Faculty of Sport and Health Science, Ritsumeikan UniversityShiga, Japan.

PMID: 28484395 PMCID: PMC5401888 DOI: 10.3389/fphys.2017.00234

Abstract

Compared to pure isometric contractions, isometric muscle force at a given length is larger when the eccentric contraction is conducted before the isometric contraction. This phenomenon is widely known as residual force enhancement, and has been confirmed consistently in isolated muscle experiments. The purpose of this study was to confirm whether residual force enhancement also occurs in human plantar flexors and to examine its joint angle dependence. Eleven men participated in this study. Isometric joint torque was measured in a Control trial (pure isometric contraction) and Residual force enhancement (RFE) trial (isometric contraction after eccentric contraction) at plantar flexion 0° (Short condition) and dorsiflexion 15° (Long condition). Fascicle length and pennation angle of the medial gastrocnemius were measured simultaneously to evaluate the influence of architectural parameters on isometric joint torque. Isometric joint torque observed in the Short condition was not significantly different between the Control and RFE trials (Control: 42.9 ± 8.0 Nm, RFE: 45.1 ± 8.4 Nm) (

Keywords: electrical stimulation; fascicle length; muscle length; pennation angle; plantar flexion

References

  1. Physiol Rep. 2013 Jun;1(1):e00004 - PubMed
  2. Adv Exp Med Biol. 2010;682:7-40 - PubMed
  3. J Exp Biol. 2001 May;204(Pt 9):1529-36 - PubMed
  4. J Physiol. 1966 May;184(1):170-92 - PubMed
  5. Am J Physiol Cell Physiol. 2010 Dec;299(6):C1398-401 - PubMed
  6. J Appl Physiol (1985). 2007 Jan;102(1):18-25 - PubMed
  7. J Physiol. 1978 Aug;281:139-55 - PubMed
  8. J Physiol. 1966 Mar;183(2):407-17 - PubMed
  9. Exerc Sport Sci Rev. 2002 Jul;30(3):106-10 - PubMed
  10. J Appl Biomech. 2011 Feb;27(1):64-73 - PubMed
  11. J Physiol. 2006 Aug 1;574(Pt 3):635-42 - PubMed
  12. J Biomech. 2009 Jul 22;42(10):1488-92 - PubMed
  13. Med Sci Sports Exerc. 1991 Jan;23(1):108-14 - PubMed
  14. J Physiol. 2000 Feb 1;522 Pt 3:503-13 - PubMed
  15. J Physiol. 2002 Nov 15;545(Pt 1):321-30 - PubMed
  16. J Biomech. 2013 Aug 9;46(12):1996-2001 - PubMed
  17. PLoS One. 2012;7(10):e48044 - PubMed
  18. Acta Anat (Basel). 1997;159(2-3):78-83 - PubMed
  19. J Biomech. 2007;40(7):1518-24 - PubMed
  20. Prog Biophys Biophys Chem. 1957;7:255-318 - PubMed
  21. J Appl Biomech. 2010 Aug;26(3):256-64 - PubMed
  22. J Biomech. 2012 Apr 5;45(6):913-8 - PubMed
  23. Am J Physiol Cell Physiol. 2012 Jan 1;302(1):C240-8 - PubMed
  24. Acta Physiol Scand. 2001 Aug;172(4):279-85 - PubMed
  25. J Biomech. 2002 Oct;35(10):1299-306 - PubMed
  26. J Physiol. 1952 May;117(1):77-86 - PubMed
  27. J Appl Biomech. 2006 May;22(2):131-47 - PubMed
  28. Proc Biol Sci. 2008 Jun 22;275(1641):1411-9 - PubMed
  29. Eur J Appl Physiol Occup Physiol. 1995;71(6):555-7 - PubMed
  30. J Appl Physiol (1985). 1998 Aug;85(2):398-404 - PubMed
  31. J Biomech. 2016 Mar 21;49(5):773-9 - PubMed
  32. J Gen Physiol. 1982 Nov;80(5):769-84 - PubMed
  33. Sci Rep. 2016 Feb 12;5:21513 - PubMed
  34. PLoS One. 2012;7(11):e49907 - PubMed

Publication Types