Display options
Share it on

Sci Rep. 2017 Apr 10;7:46110. doi: 10.1038/srep46110.

Optimization of self-catalyzed InAs Nanowires on flexible graphite for photovoltaic infrared photodetectors.

Scientific reports

Ezekiel A Anyebe, I Sandall, Z M Jin, Ana M Sanchez, Mohana K Rajpalke, Timothy D Veal, Y C Cao, H D Li, R Harvey, Q D Zhuang

Affiliations

  1. Physics Department, Lancaster University, Lancaster LA1 4YB, UK.
  2. Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZF, UK.
  3. Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
  4. Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, UK.
  5. Key Laboratory of Optoelectronic Chemical Materials and Devices, Jianghan University, Wuhan 430056, China.
  6. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.

PMID: 28393845 PMCID: PMC5385536 DOI: 10.1038/srep46110

Abstract

The recent discovery of flexible graphene monolayers has triggered extensive research interest for the development of III-V/graphene functional hybrid heterostructures. In order to fully exploit their enormous potential in device applications, it is essential to optimize epitaxial growth for the precise control of nanowire geometry and density. Herein, we present a comprehensive growth study of InAs nanowires on graphitic substrates by molecular beam epitaxy. Vertically well-aligned and thin InAs nanowires with high yield were obtained in a narrow growth temperature window of 420-450 °C within a restricted domain of growth rate and V/III flux ratio. The graphitic substrates enable high nanowire growth rates, which is favourable for cost-effective device fabrication. A relatively low density of defects was observed. We have also demonstrated InAs-NWs/graphite heterojunction devices exhibiting rectifying behaviour. Room temperature photovoltaic response with a cut-off wavelength of 3.4 μm was demonstrated. This elucidates a promising route towards the monolithic integration of InAs nanowires with graphite for flexible and functional hybrid devices.

References

  1. ACS Nano. 2010 May 25;4(5):2865-73 - PubMed
  2. Phys Rev Lett. 2007 Oct 5;99(14):146101 - PubMed
  3. Nano Lett. 2010 Mar 10;10(3):908-15 - PubMed
  4. Nano Lett. 2010 May 12;10 (5):1618-22 - PubMed
  5. Nanoscale Res Lett. 2014 Jun 25;9(1):321 - PubMed
  6. Nat Nanotechnol. 2009 Jan;4(1):50-5 - PubMed
  7. Nano Lett. 2012 Mar 14;12 (3):1431-6 - PubMed
  8. Nanoscale. 2013 May 21;5(10):4114-8 - PubMed
  9. Nano Lett. 2015 Jul 8;15(7):4348-55 - PubMed
  10. ACS Nano. 2014 Apr 22;8(4):3628-35 - PubMed
  11. J Chem Phys. 2009 Nov 28;131(20):204703 - PubMed
  12. Nano Lett. 2012 Sep 12;12 (9):4570-6 - PubMed
  13. Nano Lett. 2011 Jun 8;11(6):2424-9 - PubMed
  14. Science. 2009 Jun 5;324(5932):1312-4 - PubMed
  15. ACS Nano. 2011 Sep 27;5(9):7576-84 - PubMed
  16. Nanotechnology. 2010 Sep 10;21(36):365602 - PubMed
  17. Nano Lett. 2015 Feb 11;15(2):1109-16 - PubMed
  18. Nanoscale. 2013 May 7;5(9):3570-88 - PubMed
  19. Nano Lett. 2014;14(4):1707-13 - PubMed
  20. Nanotechnology. 2012 Jun 15;23 (23 ):235602 - PubMed
  21. ACS Nano. 2011 Aug 23;5(8):6262-71 - PubMed
  22. Phys Rev Lett. 2011 Mar 25;106(12):125505 - PubMed
  23. Nano Lett. 2013 Jan 9;13(1):233-9 - PubMed
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):021603 - PubMed
  25. Nano Lett. 2013 Mar 13;13(3):1153-61 - PubMed
  26. Small. 2015 Feb 25;11(8):936-42 - PubMed
  27. Phys Rev B Condens Matter. 1990 Mar 15;41(8):5280-5282 - PubMed
  28. Nano Lett. 2012 Jan 11;12(1):151-5 - PubMed
  29. Nano Lett. 2012 Jun 13;12(6):2745-50 - PubMed
  30. Nanoscale. 2011 Sep 1;3(9):3522-33 - PubMed
  31. Nat Nanotechnol. 2010 Aug;5(8):574-8 - PubMed
  32. Nanotechnology. 2011 Jun 17;22(24):245603 - PubMed
  33. Nanotechnology. 2011 Jul 8;22(27):275716 - PubMed
  34. Nano Lett. 2010 Nov 10;10(11):4443-9 - PubMed
  35. ACS Nano. 2011 May 24;5(5):4197-204 - PubMed
  36. Nano Lett. 2013 Sep 11;13(9):4099-105 - PubMed
  37. Science. 2003 May 23;300(5623):1249 - PubMed
  38. Adv Mater. 2011 Oct 25;23 (40):4614-9 - PubMed
  39. Phys Rev B Condens Matter. 1995 Apr 15;51(15):10048-10051 - PubMed
  40. Nano Lett. 2009 Aug;9(8):2926-34 - PubMed

Publication Types