Display options
Share it on

Front Microbiol. 2017 Apr 21;8:676. doi: 10.3389/fmicb.2017.00676. eCollection 2017.

Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic.

Frontiers in microbiology

Laura Duran Suja, Stephen Summers, Tony Gutierrez

Affiliations

  1. Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK.

PMID: 28484435 PMCID: PMC5399796 DOI: 10.3389/fmicb.2017.00676

Abstract

In this study we report the formation of marine oil snow (MOS), its associated microbial community, the factors influencing its formation, and the microbial response to crude oil in surface waters of the Faroe-Shetland Channel (FSC). The FSC is a subarctic region that is hydrodynamically complex located in the northeast Atlantic where oil extraction is currently occurring and where exploration is likely to expand into its deeper waters (>500 m). A major oil spill in this region may mirror the aftermath that ensued following the Deepwater Horizon (DWH) blowout in the Gulf of Mexico, where the massive influx of Macondo crude oil triggered the formation of copious quantities of rapidly sinking MOS and successional blooms of opportunistic oil-degrading bacteria. In laboratory experiments, we simulated environmental conditions in sea surface waters of the FSC using water collected from this site during the winter of 2015. We demonstrated that the presence of dispersant triggers the formation of MOS, and that nutrient amendments magnify this. Illumina MiSeq sequencing revealed the enrichment on MOS of associated oil-degrading (

Keywords: Deepwater Horizon; Faroe-shetland channel; crude oil; hydrocarbon-degrading bacteria; marine environment; marine oil snow (MOS)

References

  1. Environ Sci Technol. 2015 Jan 20;49(2):847-54 - PubMed
  2. PLoS One. 2013 Jun 27;8(6):e67717 - PubMed
  3. J Appl Microbiol. 2007 Nov;103(5):1716-27 - PubMed
  4. Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14900-5 - PubMed
  5. J Appl Microbiol. 2004;96(5):1057-66 - PubMed
  6. Microb Biotechnol. 2010 Sep;3(5):607-21 - PubMed
  7. Environ Microbiol. 2012 Sep;14(9):2405-16 - PubMed
  8. Biotechnol Bioeng. 2009 May 1;103(1):207-16 - PubMed
  9. Science. 2011 Sep 2;333(6047):1296-300 - PubMed
  10. Appl Environ Microbiol. 2008 Aug;74(15):4867-76 - PubMed
  11. Bioinformatics. 2011 Aug 15;27(16):2194-200 - PubMed
  12. Curr Opin Biotechnol. 2007 Jun;18(3):257-66 - PubMed
  13. PLoS One. 2015 Jul 14;10(7):e0132341 - PubMed
  14. Environ Sci Technol. 2014 Dec 16;48(24):14392-9 - PubMed
  15. Appl Microbiol Biotechnol. 2002 Nov;60(3):347-51 - PubMed
  16. Appl Environ Microbiol. 2011 Nov;77(22):7962-74 - PubMed
  17. Appl Environ Microbiol. 2002 Jan;68(1):423-6 - PubMed
  18. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 - PubMed
  19. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15906-11 - PubMed
  20. Trans Am Microsc Soc. 1973 Jul;92(3):416-21 - PubMed
  21. Biotechnol Appl Biochem. 1987 Feb;9(1):12-9 - PubMed
  22. PLoS One. 2015 May 28;10 (5):e0128371 - PubMed
  23. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1076-81 - PubMed
  24. Sci Total Environ. 2005 Dec 15;353(1-3):232-46 - PubMed
  25. Appl Environ Microbiol. 2005 Oct;71(10):5665-77 - PubMed
  26. Nat Rev Microbiol. 2015 Jun;13(6):388-96 - PubMed
  27. FEMS Microbiol Ecol. 2007 Feb;59(2):342-55 - PubMed
  28. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20292-7 - PubMed
  29. Microorganisms. 2016 Jul 27;4(3):null - PubMed
  30. Microb Ecol. 2009 Oct;58(3):447-60 - PubMed
  31. Microb Biotechnol. 2015 May;8(3):434-47 - PubMed
  32. Nature. 2002 Dec 19-26;420(6917):806-10 - PubMed
  33. Mar Pollut Bull. 2016 Mar 15;104(1-2):294-302 - PubMed
  34. Extremophiles. 2005 Dec;9(6):461-70 - PubMed
  35. PLoS One. 2012;7(4):e34816 - PubMed
  36. Extremophiles. 2003 Aug;7(4):319-26 - PubMed

Publication Types