Display options
Share it on

R Soc Open Sci. 2017 Apr 26;4(4):161092. doi: 10.1098/rsos.161092. eCollection 2017 Apr.

Classification of self-assembling protein nanoparticle architectures for applications in vaccine design.

Royal Society open science

G Indelicato, P Burkhard, R Twarock

Affiliations

  1. Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy.
  2. The Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269, USA.
  3. Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269-3125, USA.
  4. Departments of Mathematics and Biology, University of York, York YO10 5DD, UK.
  5. York Centre for Complex Systems Analysis, University of York, York YO10 5GE, UK.

PMID: 28484626 PMCID: PMC5414263 DOI: 10.1098/rsos.161092

Abstract

We introduce here a mathematical procedure for the structural classification of a specific class of self-assembling protein nanoparticles (SAPNs) that are used as a platform for repetitive antigen display systems. These SAPNs have distinctive geometries as a consequence of the fact that their peptide building blocks are formed from two linked coiled coils that are designed to assemble into trimeric and pentameric clusters. This allows a mathematical description of particle architectures in terms of bipartite (3,5)-regular graphs. Exploiting the relation with fullerene graphs, we provide a complete atlas of SAPN morphologies. The classification enables a detailed understanding of the spectrum of possible particle geometries that can arise in the self-assembly process. Moreover, it provides a toolkit for a systematic exploitation of SAPNs in bioengineering in the context of vaccine design, predicting the density of B-cell epitopes on the SAPN surface, which is critical for a strong humoral immune response.

Keywords: antigen display; fullerene; graph theory; nanoparticle; symmetry

Conflict of interest statement

P.B. is CEO of the company Alpha-O Peptides and has patents or patents pending on the technology. Alpha-O Peptides did not fund any of this research. The paper is a mathematical paper that refers to s

References

  1. Chem Biol Drug Des. 2009 Jan;73(1):53-61 - PubMed
  2. Vaccines (Basel). 2015 Oct 29;3(4):894-929 - PubMed
  3. J Exp Med. 1997 May 19;185(10):1785-92 - PubMed
  4. J Comput Chem. 2013 Jun 30;34(17):1508-26 - PubMed
  5. Science. 2013 May 3;340(6132):595-9 - PubMed
  6. J Immunol. 2009 Dec 1;183(11):7268-77 - PubMed
  7. J Struct Biol. 2012 Jan;177(1):168-76 - PubMed
  8. Influenza Res Treat. 2011;2011:126794 - PubMed
  9. PLoS One. 2012;7(10):e48304 - PubMed
  10. Science. 2012 Jun 1;336(6085):1171-4 - PubMed
  11. Wiley Interdiscip Rev Comput Mol Sci. 2015 Jan;5(1):96-145 - PubMed
  12. Sci Rep. 2016 Jan 19;6:19234 - PubMed
  13. Science. 1996 Nov 1;274(5288):761-5 - PubMed
  14. Nat Rev Immunol. 2010 Nov;10(11):787-96 - PubMed
  15. Nature. 2014 Mar 13;507(7491):201-6 - PubMed
  16. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2217-21 - PubMed
  17. J Struct Biol. 2003 Sep;143(3):258-62 - PubMed
  18. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8681-6 - PubMed
  19. Cold Spring Harb Symp Quant Biol. 1962;27:1-24 - PubMed
  20. Chem Biol Drug Des. 2012 Sep;80(3):349-57 - PubMed
  21. J Struct Biol. 2002 Jan-Feb;137(1-2):54-64 - PubMed
  22. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3671-5 - PubMed
  23. Comput Struct Biotechnol J. 2015 Nov 26;14:58-68 - PubMed
  24. Nanomedicine. 2006 Jun;2(2):95-102 - PubMed
  25. Science. 2013 May 10;340(6133):711-6 - PubMed
  26. Nature. 2013 Jul 4;499(7456):102-6 - PubMed
  27. Vaccine. 2014 May 30;32(26):3243-8 - PubMed
  28. Biophys J. 2016 Feb 2;110(3):646-60 - PubMed
  29. Science. 1997 Jun 27;276(5321):2024-7 - PubMed
  30. Nat Med. 2015 Sep;21(9):1065-70 - PubMed

Publication Types