Display options
Share it on

PeerJ. 2017 May 04;5:e3258. doi: 10.7717/peerj.3258. eCollection 2017.

Photoperiodic regime influences onset of lens opacities in a non-human primate.

PeerJ

Marko Dubicanac, Julia Strueve, Nadine Mestre-Frances, Jean-Michel Verdier, Elke Zimmermann, Marine Joly

Affiliations

  1. Institute of Zoology, Tierärztliche Hochschule Hannover, Hanover, Lower Saxony, Germany.
  2. Clinic for Small Animals, Tierärztliche Hochschule Hannover, Hanover, Lower Saxony, Germany.
  3. Department of Molecular Mechanisms in Neurodegenerative Diseases Inserm U1198, Univ. Montpellier, Montpellier, France.
  4. Centre for Comparative and Evolutionary Psychology, University of Portsmouth, Portsmouth, United Kingdom.

PMID: 28484672 PMCID: PMC5420196 DOI: 10.7717/peerj.3258

Abstract

BACKGROUND: Opacities of the lens are typical age-related phenomena which have a high influence on photoreception and consequently circadian rhythm. In mouse lemurs, a small bodied non-human primate, a high incidence (more than 50% when >seven years) of cataracts has been previously described during aging. Previous studies showed that photoperiodically induced accelerated annual rhythms alter some of mouse lemurs' life history traits. Whether a modification of photoperiod also affects the onset of age dependent lens opacities has not been investigated so far. The aim of this study was therefore to characterise the type of opacity and the mouse lemurs' age at its onset in two colonies with different photoperiodic regimen.

METHODS: Two of the largest mouse lemur colonies in Europe were investigated: Colony 1 having a natural annual photoperiodic regime and Colony 2 with an induced accelerated annual cycle. A slit-lamp was used to determine opacities in the lens. Furthermore, a subset of all animals which showed no opacities in the lens nucleus in the first examination but developed first changes in the following examination were further examined to estimate the age at onset of opacities. In total, 387 animals were examined and 57 represented the subset for age at onset estimation.

RESULTS: The first and most commonly observable opacity in the lens was nuclear sclerosis. Mouse lemurs from Colony 1 showed a delayed onset of nuclear sclerosis compared to mouse lemurs from Colony 2 (4.35 ± 1.50 years

DISCUSSION: Our study showed clear differences in age at the onset of nuclear sclerosis formation between lemurs kept under different photoperiodic regimes. Instead of measuring the chronological age, the number of seasonal cycles (

Keywords: Aging; Cataract; Mouse lemur; Nuclear sclerosis; Photoperiod; Primate

Conflict of interest statement

Elke Zimmermann is an Academic Editor for PeerJ.

References

  1. Evol Anthropol. 2014 Jan-Feb;23(1):11-4 - PubMed
  2. Sleep Med Rev. 2010 Aug;14(4):269-80 - PubMed
  3. Vet Ophthalmol. 2000;3(2-3):65-71 - PubMed
  4. Br J Ophthalmol. 2012 May;96(5):614-8 - PubMed
  5. Exp Eye Res. 2017 Mar;156:103-111 - PubMed
  6. J Biol Rhythms. 1997 Apr;12(2):136-45 - PubMed
  7. ILAR J. 2011;52(1):78-88 - PubMed
  8. Br J Ophthalmol. 2008 Nov;92(11):1439-44 - PubMed
  9. J Biol Rhythms. 2005 Oct;20(5):461-9 - PubMed
  10. Anat Rec A Discov Mol Cell Evol Biol. 2004 Nov;281(1):1095-103 - PubMed
  11. Prog Retin Eye Res. 2005 May;24(3):379-93 - PubMed
  12. Pathophysiology. 2006 Aug;13(3):151-62 - PubMed
  13. Vision Res. 2000;40(18):2467-73 - PubMed
  14. Exp Eye Res. 2005 May;80(5):709-25 - PubMed
  15. J Biol Rhythms. 2005 Aug;20(4):375-86 - PubMed
  16. Ageing Res Rev. 2012 Jan;11(1):150-62 - PubMed
  17. J Ocul Pharmacol Ther. 1997 Dec;13(6):537-50 - PubMed
  18. C R Acad Sci III. 1995 Jul;318(7):741-7 - PubMed
  19. Ophthalmic Epidemiol. 1995 Mar;2(1):49-55 - PubMed
  20. Exp Gerontol. 2003 Apr;38(4):407-14 - PubMed
  21. J Biol Rhythms. 2012 Apr;27(2):164-71 - PubMed
  22. PLoS One. 2015 Aug 18;10(8):e0135870 - PubMed
  23. BMC Ophthalmol. 2014 Jul 24;14:94 - PubMed
  24. Front Neurosci. 2015 Mar 04;9:64 - PubMed
  25. J Hum Evol. 2007 Mar;52(3):294-313 - PubMed
  26. Exp Eye Res. 1998 Nov;67(5):587-95 - PubMed
  27. PLoS One. 2014 Oct 09;9(10):e109393 - PubMed
  28. Ophthalmology. 2016 Jun;123(6):1237-44 - PubMed
  29. Ann Nutr Metab. 2008;52(4):296-8 - PubMed
  30. Vet Ophthalmol. 2007 Jan-Feb;10(1):43-9 - PubMed
  31. Vet Ophthalmol. 1999;2(3):169-172 - PubMed
  32. Neurobiol Dis. 2000 Feb;7(1):1-8 - PubMed
  33. Arch Ophthalmol. 2000 Mar;118(3):385-92 - PubMed
  34. Neurobiol Aging. 2000 Jan-Feb;21(1):81-8 - PubMed
  35. Neurobiol Learn Mem. 2010 Jul;94(1):100-6 - PubMed
  36. J Toxicol Pathol. 2011 Mar;24(1):69-73 - PubMed
  37. Am J Epidemiol. 2005 Apr 15;161(8):707-13 - PubMed
  38. Vet Clin North Am Small Anim Pract. 1995 May;25(3):661-76 - PubMed
  39. Dev Ophthalmol. 2005;38:103-19 - PubMed
  40. Ophthalmic Epidemiol. 1994 Jun;1(2):93-105 - PubMed
  41. Am J Public Health. 1992 Dec;82(12):1658-62 - PubMed
  42. Neurobiol Aging. 2006 Jul;27(7):1045-9 - PubMed
  43. Exp Eye Res. 1999 Dec;69(6):663-9 - PubMed
  44. Am J Ophthalmol. 1999 Oct;128(4):446-65 - PubMed
  45. Neurobiol Aging. 2011 May;32(5):894-906 - PubMed
  46. Z Ernahrungswiss. 1995 Sep;34(3):167-76 - PubMed

Publication Types