Display options
Share it on

JCI Insight. 2017 May 18;2(10). doi: 10.1172/jci.insight.92056. eCollection 2017 May 18.

T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction.

JCI insight

Michelle J Smith, Dawn K Reichenbach, Sarah L Parker, Megan J Riddle, Jason Mitchell, Kevin C Osum, Mahmood Mohtashami, Heather E Stefanski, Brian T Fife, Avinash Bhandoola, Kristin A Hogquist, Georg A Holländer, Juan Carlos Zúñiga-Pflücker, Jakub Tolar, Bruce R Blazar

Affiliations

  1. Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
  2. Center for Immunology, Department of Medicine, and.
  3. Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
  4. Sunnybrook Research Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
  5. T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
  6. Department of Biomedicine, University of Basel, Basel, Switzerland.
  7. Department of Paediatrics and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.

PMID: 28515359 PMCID: PMC5436538 DOI: 10.1172/jci.insight.92056

Abstract

Infusion of in vitro-derived T cell progenitor (proT) therapy with hematopoietic stem cell transplant aids the recovery of the thymus damaged by total body irradiation. To understand the interaction between proTs and the thymic microenvironment, WT mice were lethally irradiated and given T cell-deficient (Rag1-/-) marrow with WT in vitro-generated proTs, limiting mature T cell development to infused proTs. ProTs within the host thymus led to a significant increase in thymic epithelial cells (TECs) by day 21 after transplant, increasing actively cycling TECs. Upon thymus egress (day 28), proT TEC effects were lost, suggesting that continued signaling from proTs is required to sustain TEC cycling and cellularity. Thymocytes increased significantly by day 21, followed by a significant improvement in mature T cell numbers in the periphery by day 35. This protective surge was temporary, receding by day 60. Double-negative 2 (DN2) proTs selectively increased thymocyte number, while DN3 proTs preferentially increased TECs and T cells in the spleen that persisted at day 60. These findings highlight the importance of the interaction between proTs and TECs in the proliferation and survival of TECs and that the maturation stage of proTs has unique effects on thymopoiesis and peripheral T cell recovery.

Keywords: Immunology; Transplantation

References

  1. J Immunol. 2013 May 15;190(10):5110-7 - PubMed
  2. Blood. 2008 Oct 15;112(8):3255-63 - PubMed
  3. Nat Med. 2006 Sep;12(9):1039-47 - PubMed
  4. Nature. 1995 Jan 26;373(6512):350-3 - PubMed
  5. Annu Rev Immunol. 2007;25:649-79 - PubMed
  6. Immunity. 2008 Sep 19;29(3):438-50 - PubMed
  7. J Immunol. 1988 May 15;140(10):3373-9 - PubMed
  8. Immunity. 2007 Jun;26(6):678-89 - PubMed
  9. Blood. 2001 Sep 1;98(5):1601-6 - PubMed
  10. Blood. 2013 Dec 19;122(26):4210-9 - PubMed
  11. J Exp Med. 2009 Apr 13;206(4):761-78 - PubMed
  12. N Engl J Med. 2010 Aug 12;363(7):629-39 - PubMed
  13. J Immunol. 2014 Jan 15;192(2):630-40 - PubMed
  14. Sci Signal. 2013 Oct 15;6(297):ra92 - PubMed
  15. Nat Immunol. 2004 Apr;5(4):410-7 - PubMed
  16. Blood. 2001 Mar 1;97(5):1458-66 - PubMed
  17. Blood. 2011 Aug 18;118(7):1962-70 - PubMed
  18. J Clin Oncol. 2005 Aug 20;23(24):5788-94 - PubMed
  19. J Immunol. 2011 Mar 1;186(5):2835-41 - PubMed
  20. Eur J Immunol. 1997 Jan;27(1):136-46 - PubMed
  21. Semin Immunol. 2000 Oct;12(5):421-8 - PubMed
  22. Blood. 2014 Jul 10;124(2):296-304 - PubMed
  23. Blood. 2010 Feb 4;115(5):1088-97 - PubMed
  24. Annu Rev Immunol. 2003;21:139-76 - PubMed
  25. J Immunol. 2000 Sep 15;165(6):3094-8 - PubMed
  26. J Exp Med. 2012 Jul 30;209(8):1409-17 - PubMed
  27. Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1512-7 - PubMed
  28. Haematologica. 2011 Dec;96(12):1846-54 - PubMed
  29. J Immunol. 2007 Feb 15;178(4):2008-17 - PubMed
  30. Nat Immunol. 2003 Nov;4(11):1128-35 - PubMed
  31. Haematologica. 2007 Jan;92(1):11-8 - PubMed
  32. Nat Biotechnol. 2008 Apr;26(4):453-61 - PubMed
  33. Immunity. 2008 Sep 19;29(3):451-63 - PubMed
  34. J Immunol. 2012 Dec 15;189(12):5519-26 - PubMed
  35. Methods Mol Biol. 2006;330:113-21 - PubMed
  36. J Exp Med. 2013 Apr 8;210(4):757-74 - PubMed
  37. J Clin Invest. 2005 Apr;115(4):930-9 - PubMed
  38. J Exp Med. 2007 Oct 29;204(11):2521-8 - PubMed
  39. Blood. 2010 Jan 14;115(2):261-4 - PubMed
  40. Blood. 2013 Sep 19;122(12 ):2125-34 - PubMed
  41. Immunity. 2002 Dec;17(6):749-56 - PubMed
  42. Lancet. 2000 May 27;355(9218):1875-81 - PubMed
  43. Curr Protoc Cytom. 2012 Apr;Chapter 12:Unit12.26 - PubMed
  44. Cold Spring Harb Protoc. 2009 Feb;2009(2):pdb.prot5156 - PubMed
  45. J Histochem Cytochem. 2003 Sep;51(9):1225-35 - PubMed
  46. Immunol Lett. 2013 Sep-Oct;155(1-2):31-5 - PubMed
  47. Blood. 2008 Jun 15;111(12):5734-44 - PubMed
  48. Blood. 2002 Jun 15;99(12):4592-600 - PubMed
  49. Blood. 2011 Jun 23;117(25):6768-76 - PubMed
  50. Annu Rev Immunol. 2007;25:139-70 - PubMed
  51. Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):221-6 - PubMed
  52. Stem Cells. 2012 Aug;30(8):1771-80 - PubMed
  53. Immunity. 2008 Sep 19;29(3):423-37 - PubMed
  54. J Immunol Methods. 2011 Mar 31;367(1-2):85-94 - PubMed
  55. Br J Haematol. 1998 Sep;102(5):1115-23 - PubMed
  56. J Immunol. 2004 Aug 1;173(3):1604-11 - PubMed
  57. Clin Infect Dis. 2013 Oct;57(8):1182-8 - PubMed
  58. Nature. 2014 May 22;509(7501):465-70 - PubMed
  59. Semin Immunol. 2007 Oct;19(5):318-30 - PubMed
  60. Blood. 2006 Dec 1;108(12):3777-85 - PubMed
  61. Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21107-12 - PubMed

Publication Types

Grant support