Display options
Share it on

Sci Rep. 2017 Apr 19;7(1):934. doi: 10.1038/s41598-017-01077-9.

Atom size electron vortex beams with selectable orbital angular momentum.

Scientific reports

Darius Pohl, Sebastian Schneider, Paul Zeiger, Ján Rusz, Peter Tiemeijer, Sorin Lazar, Kornelius Nielsch, Bernd Rellinghaus

Affiliations

  1. IFW Dresden, Institute for Metallic Materials, Helmholtzstrasse 20, D-01069, Dresden, Germany. [email protected].
  2. IFW Dresden, Institute for Metallic Materials, Helmholtzstrasse 20, D-01069, Dresden, Germany.
  3. TU Dresden, Institute for Solid State Physics, D-01062, Dresden, Germany.
  4. Uppsala University, Department of Physics and Astronomy, SE-752 37, Uppsala, Sweden.
  5. FEI Company, PO Box 80066, 5600, KA, Eindhoven, The Netherlands.
  6. TU Dresden, Institut für Werkstoffwissenschaft, D-01062, Dresden, Germany.

PMID: 28424470 PMCID: PMC5430437 DOI: 10.1038/s41598-017-01077-9

Abstract

The decreasing size of modern functional magnetic materials and devices cause a steadily increasing demand for high resolution quantitative magnetic characterization. Transmission electron microscopy (TEM) based measurements of the electron energy-loss magnetic chiral dichroism (EMCD) may serve as the needed experimental tool. To this end, we present a reliable and robust electron-optical setup that generates and controls user-selectable single state electron vortex beams with defined orbital angular momenta. Our set-up is based on a standard high-resolution scanning TEM with probe aberration corrector, to which we added a vortex generating fork aperture and a miniaturized aperture for vortex selection. We demonstrate that atom size probes can be formed from these electron vortices and that they can be used for atomic resolution structural and spectroscopic imaging - both of which are prerequisites for future atomic EMCD investigations.

References

  1. Nat Mater. 2011 Feb;10(2):106-9 - PubMed
  2. Nature. 2006 Aug 17;442(7104):797-801 - PubMed
  3. Micron. 2012 Feb;43(2-3):374-9 - PubMed
  4. Ultramicroscopy. 2014 Sep;144:26-31 - PubMed
  5. Ultramicroscopy. 2017 Jul;178:12-19 - PubMed
  6. Nat Nanotechnol. 2009 Aug;4(8):523-7 - PubMed
  7. Nature. 2010 Mar 11;464(7286):194-8 - PubMed
  8. Microsc Microanal. 2014 Jun;20(3):832-6 - PubMed
  9. Phys Rev Lett. 2014 Oct 3;113(14):145501 - PubMed
  10. Nat Commun. 2016 Aug 31;7:12672 - PubMed
  11. Ultramicroscopy. 2015 Mar;150:16-22 - PubMed
  12. Phys Rev Lett. 2012 Feb 17;108(7):074802 - PubMed
  13. Phys Rev Lett. 2015 Oct 23;115(17):176101 - PubMed
  14. Nature. 2006 May 25;441(7092):486-8 - PubMed
  15. Nat Commun. 2014;5:3138 - PubMed
  16. Nature. 2010 Apr 1;464(7289):737-9 - PubMed
  17. Phys Rev Lett. 2009 Jan 23;102(3):037201 - PubMed
  18. Ultramicroscopy. 2016 Dec;171:186-194 - PubMed
  19. Nano Lett. 2012 May 9;12(5):2499-503 - PubMed
  20. Phys Rev Lett. 2007 Nov 9;99(19):190404 - PubMed
  21. Nature. 2010 Sep 16;467(7313):301-4 - PubMed
  22. Ultramicroscopy. 2016 May;164:62-9 - PubMed
  23. Sci Rep. 2015 Oct 29;5:15590 - PubMed
  24. Ultramicroscopy. 2003 Sep;96(3-4):463-8 - PubMed
  25. Nat Commun. 2013;4:1395 - PubMed
  26. Science. 2011 Jan 14;331(6014):192-5 - PubMed
  27. Nature. 2010 Jun 17;465(7300):901-4 - PubMed
  28. Opt Express. 2005 Feb 7;13(3):689-94 - PubMed
  29. Phys Rev Lett. 2013 Sep 6;111(10):105504 - PubMed
  30. Ultramicroscopy. 2014 Jan;136:81-5 - PubMed
  31. Nat Nanotechnol. 2014 May;9(5):337-42 - PubMed
  32. Phys Rev Lett. 2016 Mar 25;116(12):127203 - PubMed

Publication Types