Display options
Share it on

Evol Appl. 2017 Mar 17;10(5):471-484. doi: 10.1111/eva.12467. eCollection 2017 Jun.

Evolution and the duration of a doomed population.

Evolutionary applications

Richard Gomulkiewicz, Stephen M Krone, Christopher H Remien

Affiliations

  1. School of Biological Sciences Washington State University Pullman WA USA.
  2. Department of Mathematics University of Idaho Moscow ID USA.

PMID: 28515780 PMCID: PMC5427677 DOI: 10.1111/eva.12467

Abstract

Many populations are doomed to extinction, but little is known about how evolution contributes to their longevity. We address this by modeling an asexual population consisting of genotypes whose abundances change independently according to a system of continuous branching diffusions. Each genotype is characterized by its initial abundance, growth rate, and reproductive variance. The latter two components determine the genotype's "risk function" which describes its per capita probability of extinction at any time. We derive the probability distribution of extinction times for a polymorphic population, which can be expressed in terms of genotypic risk functions. We use this to explore how spontaneous mutation, abrupt environmental change, or population supplementation and removal affect the time to extinction. Results suggest that evolution based on new mutations does little to alter the time to extinction. Abrupt environmental changes that affect all genotypes can have more substantial impact, but, curiously, a beneficial change does more to extend the lifetime of thriving than threatened populations of the same initial abundance. Our results can be used to design policies that meet specific conservation goals or management strategies that speed the elimination of agricultural pests or human pathogens.

Keywords: conservation biology; continuous branching diffusion; environment change; evolutionary rescue; extinction; human pathogens; mutation; pest management

References

  1. Evol Appl. 2017 Mar 17;10(5):471-484 - PubMed
  2. Theor Popul Biol. 2006 Jun;69(4):419-41 - PubMed
  3. Conserv Biol. 2015 Jun;29(3):755-64 - PubMed
  4. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120088 - PubMed
  5. Am Nat. 1993 Dec.;142(6):911-927 - PubMed
  6. Evol Appl. 2011 Mar;4(2):315-25 - PubMed
  7. Evol Appl. 2013 Jun;6(4):608-16 - PubMed
  8. Genetics. 1974 Mar;76(3):601-6 - PubMed
  9. Theor Popul Biol. 2007 Dec;72(4):468-79 - PubMed
  10. Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1278-82 - PubMed
  11. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120404 - PubMed
  12. Evol Appl. 2010 Mar;3(2):97-108 - PubMed
  13. Am Nat. 2014 Jan;183(1):E17-35 - PubMed
  14. Proc Biol Sci. 2014 Jan 22;281(1778):20132795 - PubMed
  15. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10557-62 - PubMed
  16. PLoS Genet. 2014 Aug 14;10(8):e1004551 - PubMed
  17. J Theor Biol. 2014 Jan 7;340:222-31 - PubMed
  18. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120083 - PubMed
  19. Trends Ecol Evol. 2014 Sep;29(9):521-30 - PubMed
  20. Conserv Biol. 2015 Oct;29(5):1268-78 - PubMed
  21. Evolution. 1995 Feb;49(1):201-207 - PubMed
  22. Evol Appl. 2014 Dec;7(10):1161-79 - PubMed
  23. Evolution. 1995 Feb;49(1):151-163 - PubMed
  24. Theor Popul Biol. 2007 Aug;72(1):121-35 - PubMed
  25. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120080 - PubMed
  26. Am Nat. 2007 Feb;169(2):227-44 - PubMed

Publication Types

Grant support