Display options
Share it on

Chem Soc Rev. 2017 May 22;46(10):2732-2753. doi: 10.1039/c7cs00013h.

Emerging tellurium nanostructures: controllable synthesis and their applications.

Chemical Society reviews

Zhen He, Yuan Yang, Jian-Wei Liu, Shu-Hong Yu

Affiliations

  1. Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Hefei Science Centre, CAS, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China. [email protected] [email protected].

PMID: 28425532 DOI: 10.1039/c7cs00013h

Abstract

Tellurium (Te) is a rare element in trace amounts of about one part per billion, comparable to that of platinum and ranked 75th in the abundance of the elements in the earth crust. Te nanostructures, as narrow bandgap semiconductors, have numerous potential applications in the fabrication of many modern devices. The past decades have witnessed an explosion in new strategies for synthesizing diverse emerging Te nanostructures with controlled compositions, sizes, shapes, and structures. Their structure-determined nature makes functional Te nanomaterials an attractive candidate for modern applications. This review focuses on the synthesis and morphology control of emerging Te nanostructures and summarizes the latest developments in the applications of Te nanostructures, such as their use as chemical transformation templates to access a huge family of nanowires/nanotubes, batteries, photodetectors, ion detection and removal, element doping, piezoelectric energy harvesting, gas sensing, thermoelectric devices and many other device applications. Various Te nanostructures with different shapes and structures will exploit the beneficial properties associated with their assembly process and nanofabrication. Finally, the prospects for future applications of Te nanomaterials are summarized and highlighted.

Publication Types