Display options
Share it on

Front Pharmacol. 2017 Mar 27;8:159. doi: 10.3389/fphar.2017.00159. eCollection 2017.

Membrane Associated Progesterone Receptors: Promiscuous Proteins with Pleiotropic Functions - Focus on Interactions with Cytochromes P450.

Frontiers in pharmacology

Chang S Ryu, Kathrin Klein, Ulrich M Zanger

Affiliations

  1. Department of Molecular and Cell Biology, Dr. Margarete Fischer-Bosch-Institute of Clinical PharmacologyStuttgart, Germany; Eberhard-Karls-UniversityTübingen, Germany.

PMID: 28396637 PMCID: PMC5366339 DOI: 10.3389/fphar.2017.00159

Abstract

Membrane-associated progesterone receptors (MAPR) are a group of four rather small, partially homologous proteins, which share a similar non-covalent heme-binding domain that is related to cytochrome b5, a well-known functional interaction partner of microsomal cytochrome P450 (CYP) monooxygenase systems. Apart from their structural similarities the four proteins progesterone membrane component 1 (PGRMC1, also referred to as IZA, sigma-2 receptor, Dap1), PGRMC2, neudesin (NENF) and neuferricin (CYB5D2) display surprisingly divergent and multifunctional physiological properties related to cholesterol/steroid biosynthesis, drug metabolism and response, iron homeostasis, heme trafficking, energy metabolism, autophagy, apoptosis, cell cycle regulation, cell migration, neural functions, and tumorigenesis and cancer progression. The purpose of this mini-review is to briefly summarize the structural and functional properties of MAPRs with particular focus on their interactions with the CYP system. For PGRMC1, originally identified as a non-canonical progesterone-binding protein that mediates some immediate non-genomic actions of progesterone, available evidence indicates mainly activating interactions with steroidogenic CYPs including CYP11A1, CYP21A2, CYP17, CYP19, CYP51A1, and CYP61A1, while interactions with drug metabolizing CYPs including CYP2C2, CYP2C8, CYP2C9, CYP2E1, and CYP3A4 were either ineffective or slightly inhibitory. For the other MAPRs the evidence is so far less conclusive. We also point out that experimental limitations question some of the previous conclusions. Use of appropriate model systems should help to further clarify the true impact of these proteins on CYP-mediated metabolic pathways.

Keywords: PGRMC1; PGRMC2; cytochrome P450; membrane-associated progesterone receptor; neudesin; neuferricin; protein-protein interaction

References

  1. Mol Cell Biol. 2005 Mar;25(5):1669-79 - PubMed
  2. Nat Commun. 2011 Jul 05;2:380 - PubMed
  3. Acta Endocrinol (Copenh). 1988 Nov;119(3):420-6 - PubMed
  4. Cell Mol Life Sci. 2015 Jun;72(12):2395-409 - PubMed
  5. Autophagy. 2013 Oct;9(10 ):1566-78 - PubMed
  6. Drug Metab Dispos. 2008 Oct;36(10):2113-20 - PubMed
  7. J Clin Invest. 2016 Jan;126(1):389-401 - PubMed
  8. Clin Pharmacol Ther. 2012 Jun;91(6):1044-52 - PubMed
  9. Genet Mol Biol. 2010 Jul;33(3):471-4 - PubMed
  10. Eur J Biochem. 2001 Apr;268(7):2141-7 - PubMed
  11. Expert Opin Drug Metab Toxicol. 2012 Mar;8(3):361-70 - PubMed
  12. Mol Cell Endocrinol. 2004 Feb 27;215(1-2):143-8 - PubMed
  13. Menopause. 2017 Feb;24(2):203-209 - PubMed
  14. Drug Metab Dispos. 2011 Nov;39(11):2057-65 - PubMed
  15. Eur J Biochem. 1996 Aug 1;239(3):726-31 - PubMed
  16. Pharmacol Ther. 2013 Apr;138(1):103-41 - PubMed
  17. Nat Commun. 2016 Mar 18;7:11030 - PubMed
  18. Biochemistry. 2016 Sep 20;55(37):5204-17 - PubMed
  19. FEBS J. 2005 Nov;272(22):5832-43 - PubMed
  20. Climacteric. 2013 Oct;16(5):509-13 - PubMed
  21. Steroids. 2008 Oct;73(9-10):929-34 - PubMed
  22. PLoS One. 2014 Nov 12;9(11):e111899 - PubMed
  23. Mol Pharmacol. 2011 Mar;79(3):340-50 - PubMed
  24. BMC Cancer. 2012 Jul 02;12:274 - PubMed
  25. Biol Reprod. 2015 Sep;93(3):63 - PubMed
  26. Pharmacol Ther. 2003 May;98(2):221-33 - PubMed
  27. Genome Biol. 2002;3(12):RESEARCH0068 - PubMed
  28. Biochim Biophys Acta. 2016 Dec;1866(2):339-349 - PubMed
  29. Curr Protein Pept Sci. 2012 Nov;13(7):687-96 - PubMed
  30. Front Mol Biosci. 2015 May 19;2:24 - PubMed
  31. Pharmacol Ther. 2013 May;138(2):229-54 - PubMed
  32. PLoS One. 2014 Jan 22;9(1):e86435 - PubMed
  33. Mol Pharmacol. 2015 Apr;87(4):733-9 - PubMed
  34. Cancer Lett. 2015 Jan 28;356(2 Pt B):434-42 - PubMed
  35. Chem Res Toxicol. 2014 Sep 15;27(9):1474-86 - PubMed
  36. Steroids. 2013 Jun;78(6):555-8 - PubMed
  37. Eukaryot Cell. 2003 Apr;2(2):306-17 - PubMed
  38. J Neurosci Res. 2005 Feb 1;79(3):287-94 - PubMed
  39. Biochemistry. 2015 Mar 3;54(8):1638-47 - PubMed
  40. Biol Chem. 1998 Jul;379(7):907-11 - PubMed
  41. Transl Psychiatry. 2015 Oct 20;5:e661 - PubMed
  42. J Biol Chem. 2007 Dec 14;282(50):36543-51 - PubMed
  43. Cell Metab. 2007 Feb;5(2):143-9 - PubMed
  44. J Biol Chem. 2010 Aug 6;285(32):24775-82 - PubMed
  45. J Neurochem. 2010 Mar;112(5):1156-67 - PubMed
  46. Carcinogenesis. 1996 Dec;17 (12 ):2609-15 - PubMed
  47. J Steroid Biochem Mol Biol. 2007 Jun-Jul;105(1-5):16-36 - PubMed
  48. Curr Drug Targets. 2016;17(10):1189-97 - PubMed
  49. Nat Rev Genet. 2004 Sep;5(9):669-76 - PubMed
  50. BMC Cancer. 2011 Feb 22;11:81 - PubMed
  51. Endocrinology. 2016 Sep;157(9):3309-19 - PubMed
  52. Biol Reprod. 2014 Nov;91(5):104 - PubMed
  53. Steroids. 2012 Dec;77(14):1543-50 - PubMed
  54. Annu Rev Physiol. 1997;59:365-93 - PubMed
  55. Biochem Cell Biol. 2011 Jun;89(3):341-50 - PubMed
  56. Breast Cancer Res. 2008;10(5):R85 - PubMed
  57. Neuroscience. 2011 Jan 13;172:55-65 - PubMed
  58. Trends Pharmacol Sci. 2016 Feb;37(2):85-6 - PubMed

Publication Types