Display options
Share it on

Front Bioeng Biotechnol. 2017 Mar 27;5:18. doi: 10.3389/fbioe.2017.00018. eCollection 2017.

Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels.

Frontiers in bioengineering and biotechnology

Adam J Connolly, Edward Vigmond, Martin J Bishop

Affiliations

  1. Department of Biomedical Engineering and Imaging Sciences, King's College London , London , UK.
  2. IHU Liryc, Electrophysiology and Heart Modeling Instituté, Fondation Bordeaux Université, Bordeaux, France; IMB, UMR 5251, Univ. Bordeaux, Talence, France.

PMID: 28396856 PMCID: PMC5366349 DOI: 10.3389/fbioe.2017.00018

Abstract

INTRODUCTION AND BACKGROUND: Virtual electrodes formed by field stimulation during defibrillation of cardiac tissue play an important role in eliciting activations. It has been suggested that the coronary vasculature is an important source of virtual electrodes, especially during low-energy defibrillation. This work aims to further the understanding of how virtual electrodes from the coronary vasculature influence defibrillation outcomes.

METHODS: Using the bidomain model, we investigated how field stimulation elicited activations from virtual electrodes around idealized intramural blood vessels. Strength-interval curves, which quantify the stimulus strength required to elicit wavefront propagation from the vessels at different states of tissue refractoriness, were computed for each idealized geometry.

RESULTS: Make excitations occurred at late diastolic intervals, originating from regions of depolarization around the vessel. Break excitations occurred at early diastolic intervals, whereby the vessels were able to excite surrounding refractory tissue due to the local restoration of excitability by virtual electrode-induced hyperpolarizations. Overall, strength-interval curves had similar morphologies and underlying excitation mechanisms compared with previous experimental and numerical unipolar stimulation studies of cardiac tissue. Including the presence of the vessel wall increased the field strength required for make excitations but decreased the field strength required for break excitations, and the field strength at which break excitations occurred was generally greater than 5 V/cm. Finally, in a more realistic ventricular slice geometry, the proximity of virtual electrodes around subepicardial vessels was seen to cause break excitations in the form of propagating unstable wavelets to the subepicardial layer.

CONCLUSION: Representing the blood vessel wall microstructure in computational bidomain models of defibrillation is recommended as it significantly alters the electrophysiological response of the vessel to field stimulation. Although vessels may facilitate excitation of relatively refractory tissue via break excitations, the field strength required for this is generally greater than those used in the literature on low-energy defibrillation. However, the high-intensity shocks used in standard defibrillation may elicit break excitation propagation from the coronary vasculature.

Keywords: bidomain; cardiac electrophysiology; defibrillation; low energy; modeling; shock; strength–interval; vessels

References

  1. Phys Rev Lett. 2012 Sep 14;109(11):118106 - PubMed
  2. Circulation. 2009 Aug 11;120(6):467-76 - PubMed
  3. Europace. 2014 May;16(5):705-13 - PubMed
  4. Ann Biomed Eng. 1998 Jul-Aug;26(4):584-96 - PubMed
  5. Acta Anat (Basel). 1998;163(2):63-8 - PubMed
  6. Circ J. 2014;78(5):1127-35 - PubMed
  7. Circ Res. 2000 Nov 10;87(10):922-8 - PubMed
  8. Biophys J. 1997 Sep;73(3):1410-23 - PubMed
  9. Phys Rev Lett. 2007 Nov 16;99(20):208101 - PubMed
  10. Biophys J. 2007 Nov 15;93(10):3714-26 - PubMed
  11. Circ Res. 1982 Mar;50(3):342-51 - PubMed
  12. IEEE Trans Biomed Eng. 2002 Sep;49(9):1051-4 - PubMed
  13. IEEE Trans Biomed Eng. 2011 Apr;58(4):1066-75 - PubMed
  14. Heart Rhythm. 2010 Jul;7(7):953-61 - PubMed
  15. J Cardiovasc Electrophysiol. 2003 Jul;14(7):756-63 - PubMed
  16. IEEE Trans Biomed Eng. 1997 Apr;44(4):326-8 - PubMed
  17. Circ Res. 1970 Nov;27(5):811-23 - PubMed
  18. IEEE Trans Biomed Eng. 2014 Mar;61(3):900-10 - PubMed
  19. Phys Rev Lett. 2004 Jul 30;93(5):058101 - PubMed
  20. Am J Physiol Heart Circ Physiol. 2010 Feb;298(2):H699-718 - PubMed
  21. Nature. 2011 Jul 13;475(7355):235-9 - PubMed
  22. Front Physiol. 2015 Jan 06;5:511 - PubMed
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011909 - PubMed
  24. J Physiol. 1976 Feb;255(2):335-46 - PubMed
  25. Circ Res. 1979 May;44(5):701-12 - PubMed
  26. Nat Commun. 2016 May 10;7:11437 - PubMed
  27. PLoS One. 2014 Oct 07;9(10):e109754 - PubMed
  28. Ann Biomed Eng. 1991;19(6):669-78 - PubMed
  29. Comput Math Methods Med. 2013;2013:134163 - PubMed
  30. Heart Rhythm. 2013 Aug;10(8):1209-17 - PubMed
  31. Am J Cardiol. 1975 Jul;36(1):37-44 - PubMed
  32. Circ Res. 2008 Mar 28;102(6):737-45 - PubMed
  33. Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1088-100 - PubMed
  34. Biophys J. 2011 Dec 21;101(12):2871-81 - PubMed
  35. Heart Rhythm. 2013 Aug;10(8):1109-16 - PubMed
  36. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021926 - PubMed
  37. J Electrocardiol. 2003;36 Suppl:69-74 - PubMed
  38. Ann Biomed Eng. 2012 Oct;40(10 ):2243-54 - PubMed
  39. J Cardiovasc Electrophysiol. 1996 May;7(5):424-44 - PubMed
  40. J Physiol. 2013 Sep 1;591(17):4321-34 - PubMed
  41. Circ Arrhythm Electrophysiol. 2012 Feb;5(1):210-9 - PubMed
  42. Circ Arrhythm Electrophysiol. 2013 Aug;6(4):809-17 - PubMed
  43. J Theor Biol. 1999 Aug 7;199(3):311-9 - PubMed
  44. IEEE Trans Biomed Eng. 2010 Oct;57(10):2335-45 - PubMed
  45. Biophys J. 2004 Oct;87(4):2271-82 - PubMed
  46. Crit Rev Biomed Eng. 1993;21(1):1-77 - PubMed
  47. Heart Rhythm. 2007 Jun;4(6):766-7 - PubMed
  48. Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2602-15 - PubMed
  49. J Am Coll Cardiol. 2012 Dec 11;60(23):2393-8 - PubMed
  50. Heart Rhythm. 2008 Apr;5(4):565-72 - PubMed

Publication Types

Grant support