Display options
Share it on

Sci Rep. 2017 May 09;7(1):1640. doi: 10.1038/s41598-017-01748-7.

Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion.

Scientific reports

Serban Lepadatu, Henri Saarikoski, Robert Beacham, Maria Jose Benitez, Thomas A Moore, Gavin Burnell, Satoshi Sugimoto, Daniel Yesudas, May C Wheeler, Jorge Miguel, Sarnjeet S Dhesi, Damien McGrouther, Stephen McVitie, Gen Tatara, Christopher H Marrows

Affiliations

  1. School of Physics & Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom.
  2. Jeremiah Horrocks Institute for Mathematics, Physics & Astronomy, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom.
  3. RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
  4. Scottish Universities Physics Alliance, School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
  5. Departamento de Física, Escuela Politécnica Nacional, Quito, Ecuador.
  6. Diamond Light Source, Chilton, Didcot, OX11 0DE, United Kingdom.
  7. School of Physics & Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom. [email protected].

PMID: 28487513 PMCID: PMC5431626 DOI: 10.1038/s41598-017-01748-7

Abstract

Domain walls in ferromagnetic nanowires are potential building-blocks of future technologies such as racetrack memories, in which data encoded in the domain walls are transported using spin-polarised currents. However, the development of energy-efficient devices has been hampered by the high current densities needed to initiate domain wall motion. We show here that a remarkable reduction in the critical current density can be achieved for in-plane magnetised coupled domain walls in CoFe/Ru/CoFe synthetic ferrimagnet tracks. The antiferromagnetic exchange coupling between the layers leads to simple Néel wall structures, imaged using photoemission electron and Lorentz transmission electron microscopy, with a width of only ~100 nm. The measured critical current density to set these walls in motion, detected using magnetotransport measurements, is 1.0 × 10

References

  1. Phys Rev Lett. 2003 Nov 7;91(19):197203 - PubMed
  2. Phys Rev Lett. 2007 Nov 23;99(21):217208 - PubMed
  3. Phys Rev Lett. 1986 Nov 10;57(19):2442-2445 - PubMed
  4. Science. 2008 Apr 11;320(5873):190-4 - PubMed
  5. Nat Mater. 2014 Jan;13(1):11-20 - PubMed
  6. Nat Commun. 2013;4:2293 - PubMed
  7. Nat Nanotechnol. 2015 Mar;10(3):221-6 - PubMed
  8. Phys Rev Lett. 2005 Jul 8;95(2):026601 - PubMed
  9. Nat Mater. 2011 Mar;10(3):194-7 - PubMed
  10. Nat Nanotechnol. 2015 Mar;10(3):195-8 - PubMed
  11. Phys Rev Lett. 2007 May 4;98(18):187202 - PubMed
  12. Nat Mater. 2013 Jul;12(7):611-6 - PubMed
  13. Phys Rev Lett. 2014 Dec 5;113(23):237204 - PubMed
  14. Nat Nanotechnol. 2013 Aug;8(8):587-93 - PubMed
  15. Phys Rev Lett. 2012 Jun 1;108(22):227208 - PubMed
  16. Phys Rev Lett. 2004 Sep 17;93(12):127204 - PubMed
  17. Nat Commun. 2015 Dec 08;6:8957 - PubMed
  18. Phys Rev Lett. 2012 Jan 6;108(1):017203 - PubMed
  19. Phys Rev Lett. 2004 Feb 27;92(8):086601 - PubMed
  20. Science. 2005 Sep 9;309(5741):1688-92 - PubMed
  21. Phys Rev Lett. 2010 Jul 30;105(5):056601 - PubMed
  22. Phys Rev Lett. 2004 Feb 20;92(7):077205 - PubMed
  23. Phys Rev Lett. 2006 Aug 4;97(5):057203 - PubMed
  24. Phys Rev Lett. 2009 Mar 27;102(12):127203 - PubMed
  25. Nat Commun. 2012;3:1028 - PubMed
  26. Phys Rev Lett. 2010 Oct 29;105(18):187203 - PubMed
  27. Phys Rev Lett. 1990 May 7;64(19):2304-2307 - PubMed
  28. Phys Rev Lett. 2008 Dec 5;101(23):237401 - PubMed
  29. Phys Rev Lett. 2002 Aug 12;89(7):077201 - PubMed
  30. Nat Nanotechnol. 2013 Jul;8(7):527-33 - PubMed
  31. Nat Nanotechnol. 2008 Feb;3(2):97-100 - PubMed
  32. Phys Rev Lett. 2007 Jan 19;98(3):037204 - PubMed
  33. Ultramicroscopy. 2015 May;152:57-62 - PubMed

Publication Types