Display options
Share it on

Mol Ther Nucleic Acids. 2016;5:e332. doi: 10.1038/mtna.2016.37.

iRNA-PseU: Identifying RNA pseudouridine sites.

Molecular therapy. Nucleic acids

Wei Chen, Hua Tang, Jing Ye, Hao Lin, Kuo-Chen Chou

Affiliations

  1. Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China; Gordon Life Science Institute, Boston, Massachusetts, USA. Electronic address: [email protected].
  2. Department of Pathophysiology, Southwest Medical University, Luzhou, China.
  3. Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China.
  4. Gordon Life Science Institute, Boston, Massachusetts, USA; Key Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China. Electronic address: [email protected].
  5. Gordon Life Science Institute, Boston, Massachusetts, USA; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia. Electronic address: [email protected].

PMID: 28427142 PMCID: PMC5330936 DOI: 10.1038/mtna.2016.37

Abstract

As the most abundant RNA modification, pseudouridine plays important roles in many biological processes. Occurring at the uridine site and catalyzed by pseudouridine synthase, the modification has been observed in nearly all kinds of RNA, including transfer RNA, messenger RNA, small nuclear or nucleolar RNA, and ribosomal RNA. Accordingly, its importance to basic research and drug development is self-evident. Despite some experimental technologies have been developed to detect the pseudouridine sites, they are both time-consuming and expensive. Facing the explosive growth of RNA sequences in the postgenomic age, we are challenged to address the problem by computational approaches: For an uncharacterized RNA sequence, can we predict which of its uridine sites can be modified as pseudouridine and which ones cannot? Here a predictor called "iRNA-PseU" was proposed by incorporating the chemical properties of nucleotides and their occurrence frequency density distributions into the general form of pseudo nucleotide composition (PseKNC). It has been demonstrated via the rigorous jackknife test, independent dataset test, and practical genome-wide analysis that the proposed predictor remarkably outperforms its counterpart. For the convenience of most experimental scientists, the web-server for iRNA-PseU was established at http://lin.uestc.edu.cn/server/iRNA-PseU, by which users can easily get their desired results without the need to go through the mathematical details.

Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy. Published by Elsevier Inc. All rights reserved.

Keywords: Web-server; iRNA-PseU; nucleotide chemical property; nucleotide frequency; pseudouridine; Ψ site

References

  1. Anal Biochem. 2016 Mar 15;497:60-7 - PubMed
  2. J Theor Biol. 2015 Jan 21;365:96-103 - PubMed
  3. J Theor Biol. 2011 Mar 21;273(1):236-47 - PubMed
  4. PLoS One. 2015 Mar 30;10 (3):e0121501 - PubMed
  5. J Biol Chem. 1993 Aug 15;268(23):16938-48 - PubMed
  6. PLoS One. 2014 Oct 29;9(10):e110799 - PubMed
  7. Biophys Chem. 1990 Jan;35(1):1-24 - PubMed
  8. Anal Biochem. 2015 Apr 1;474:69-77 - PubMed
  9. Bioinformatics. 2012 Dec 1;28(23):3150-2 - PubMed
  10. Mol Biosyst. 2013 Apr 5;9(4):634-44 - PubMed
  11. Molecules. 2016 Jan 19;21(1):E95 - PubMed
  12. Biomed Res Int. 2014;2014:623149 - PubMed
  13. J Theor Biol. 2015 Nov 21;385:153-9 - PubMed
  14. Anal Biochem. 2014 Jul 1;456:53-60 - PubMed
  15. Amino Acids. 2007 Jul;33(1):57-67 - PubMed
  16. Cell Rep. 2014 Aug 21;8(4):966-73 - PubMed
  17. Nucleic Acids Res. 2014 Dec 1;42(21):12961-72 - PubMed
  18. Int J Mol Sci. 2014 Feb 26;15(3):3495-506 - PubMed
  19. Bioinformatics. 2013 Apr 1;29(7):960-2 - PubMed
  20. Bioinformatics. 2016 Feb 1;32(3):362-9 - PubMed
  21. Anal Biochem. 2016 Mar 15;497:48-56 - PubMed
  22. Biomed Res Int. 2014;2014:286419 - PubMed
  23. Nat Chem Biol. 2015 Aug;11(8):592-7 - PubMed
  24. AIDS Res Hum Retroviruses. 1992 Dec;8(12):1967-76 - PubMed
  25. Bioinformatics. 2015 Apr 15;31(8):1307-9 - PubMed
  26. Genomics. 2016 Mar;107(2-3):69-75 - PubMed
  27. Mol Biosyst. 2015 Oct;11(10):2620-34 - PubMed
  28. Anal Biochem. 2014 Oct 1;462:76-83 - PubMed
  29. Cell. 2014 Sep 25;159(1):148-62 - PubMed
  30. Nucleic Acids Res. 2016 Jan 4;44(D1):D259-65 - PubMed
  31. J Theor Biol. 2015 Jan 7;364:284-94 - PubMed
  32. Biochem J. 1980 Jun 1;187(3):829-35 - PubMed
  33. PLoS One. 2013;8(2):e55844 - PubMed
  34. Biochemistry. 1993 Jul 6;32(26):6548-54 - PubMed
  35. RNA. 2013 Nov;19(11):1474-82 - PubMed
  36. Bioinformatics. 2015 Jan 1;31(1):119-20 - PubMed
  37. Biophys J. 2003 May;84(5):3257-63 - PubMed
  38. Anal Biochem. 2012 Jun 15;425(2):117-9 - PubMed
  39. J Biomol Struct Dyn. 2015;33(10):2221-33 - PubMed
  40. Mol Biosyst. 2012 Feb;8(2):629-41 - PubMed
  41. J Comput Chem. 2015 Dec 5;36(31):2317-27 - PubMed
  42. Curr Drug Metab. 2010 May;11(4):369-78 - PubMed
  43. J Chem Inf Model. 2005 Mar-Apr;45(2):407-13 - PubMed
  44. J Biomol Struct Dyn. 1998 Jun;15(6):1121-32 - PubMed
  45. Amino Acids. 2007 Sep;33(3):423-8 - PubMed
  46. J Theor Biol. 2011 Sep 7;284(1):142-8 - PubMed
  47. Bioinformatics. 2015 Oct 15;31(20):3362-4 - PubMed
  48. Mol Genet Genomics. 2016 Feb;291(1):473-81 - PubMed
  49. Proteins. 2001 Jan 1;42(1):136-9 - PubMed
  50. Nucleic Acids Res. 2015 Jul 1;43(W1):W65-71 - PubMed
  51. RNA. 2015 Apr;21(4):659-60 - PubMed
  52. Int J Mol Sci. 2014 Jan 24;15(2):1746-66 - PubMed
  53. J Theor Biol. 2010 Nov 7;267(1):29-34 - PubMed
  54. Anal Biochem. 2007 Nov 1;370(1):1-16 - PubMed
  55. Anal Biochem. 2013 May 15;436(2):168-77 - PubMed
  56. J Theor Biol. 2014 Sep 7;356:30-5 - PubMed
  57. J Biol Chem. 1993 Jul 15;268(20):14875-80 - PubMed
  58. Nature. 2014 Nov 6;515(7525):143-6 - PubMed
  59. IUBMB Life. 2000 May;49(5):341-51 - PubMed
  60. Bioinformatics. 2014 Jun 1;30(11):1522-9 - PubMed
  61. J Mol Biol. 1994 Apr 22;238(1):1-8 - PubMed
  62. J Theor Biol. 2015 Jul 21;377:47-56 - PubMed
  63. Oncotarget. 2016 Mar 29;7(13):16895-909 - PubMed
  64. J Cell Biochem. 2003 Dec 15;90(6):1250-60 - PubMed
  65. J Biol Chem. 2002 Nov 29;277(48):45765-9 - PubMed
  66. Trends Biochem Sci. 2013 Apr;38(4):210-8 - PubMed
  67. Biochem Biophys Res Commun. 2007 Jun 8;357(3):633-40 - PubMed
  68. J Theor Biol. 2011 Sep 7;284(1):42-51 - PubMed
  69. Crit Rev Biochem Mol Biol. 1995;30(4):275-349 - PubMed
  70. Anal Biochem. 2015 Dec 1;490:26-33 - PubMed
  71. Mol Biosyst. 2013 Jun;9(6):1092-100 - PubMed
  72. Nucleic Acids Res. 2013 Apr 1;41(6):e68 - PubMed
  73. Bioinformatics. 2005 Jan 1;21(1):10-9 - PubMed
  74. Proteins. 2001 May 15;43(3):246-55 - PubMed
  75. Med Chem. 2015;11(3):218-34 - PubMed
  76. Biochem J. 1984 Aug 15;222(1):169-76 - PubMed
  77. Mol Genet Genomics. 2016 Feb;291(1):285-96 - PubMed

Publication Types