Display options
Share it on

Ecol Evol. 2017 Mar 21;7(8):2735-2746. doi: 10.1002/ece3.2660. eCollection 2017 Apr.

Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads.

Ecology and evolution

Kowiyou Yessoufou, Barnabas H Daru, Respinah Tafirei, Hosam O Elansary, Isaac Rampedi

Affiliations

  1. Department of Geography Environmental Management and Energy Studies University of Johannesburg Johannesburg South Africa.
  2. Department of Organismic and Evolutionary Biology and Harvard University Herbaria Harvard University Cambridge MA USA.
  3. Department of Plant Sciences University of Pretoria Pretoria South Africa.
  4. Department of Floriculture Ornamental Horticulture and Garden Design Alexandria University Alexandria Egypt.

PMID: 28428864 PMCID: PMC5395460 DOI: 10.1002/ece3.2660

Abstract

Will the ongoing extinction crisis cause a severe loss of evolutionary information accumulated over millions of years on the tree of life? This question has been largely explored, particularly for vertebrates and angiosperms. However, no equivalent effort has been devoted to gymnosperms. Here, we address this question focusing on cycads, the gymnosperm group exhibiting the highest proportion of threatened species in the plant kingdom. We assembled the first complete phylogeny of cycads and assessed how species loss under three scenarios would impact the cycad tree of life. These scenarios are as follows: (1) All top 50% of evolutionarily distinct (ED) species are lost; (2) all threatened species are lost; and (3) only all threatened species in each IUCN category are lost. Finally, we analyzed the biogeographical pattern of cycad diversity hotspots and tested for gaps in the current global conservation network. First, we showed that threatened species are not significantly clustered on the cycad tree of life. Second, we showed that the loss of all vulnerable or endangered species does not depart significantly from random loss. In contrast, the loss of all top 50% ED, all threatened or all critically endangered species, would result in a greater loss of PD (Phylogenetic Diversity) than expected. To inform conservation decisions, we defined five hotpots of diversity, and depending on the diversity metric used, these hotspots are located in Southern Africa, Australia, Indo-Pacific, and Mexico and all are found within protected areas. We conclude that the phylogenetic diversity accumulated over millions of years in the cycad tree of life would not survive the current extinction crisis. As such, prioritizing efforts based on ED and concentrating efforts on critically endangered species particularly in southern Africa, Australia, Indo-Pacific, and Mexico are required to safeguarding the evolutionary diversity in the cycad tree of life.

Keywords: Biogeography; cycad tree of life; diversity hotspots; evolutionary distinctiveness; extinction risk; gymnosperms

References

  1. Evolution. 2008 Aug;62(8):1866-75 - PubMed
  2. Nature. 2012 Aug 2;488(7409):78-81 - PubMed
  3. PLoS One. 2014 Jan 08;9(1):e82898 - PubMed
  4. Conserv Biol. 2012 Aug;26(4):593-601 - PubMed
  5. Conserv Biol. 2010 Aug;24(4):1042-51 - PubMed
  6. Proc Natl Acad Sci U S A. 2013 May 28;110(22):8996-9000 - PubMed
  7. Bioinformatics. 2003 Aug 12;19(12):1572-4 - PubMed
  8. Science. 1997 Oct 24;278(5338):692-4 - PubMed
  9. PLoS Biol. 2011 May;9(5):e1000620 - PubMed
  10. Trends Ecol Evol. 2011 Oct;26(10):508-13 - PubMed
  11. PLoS One. 2015 Jan 30;10(1):e0117971 - PubMed
  12. Mol Ecol. 2008 Jun;17(11):2722-9 - PubMed
  13. PLoS One. 2011;6(8):e23528 - PubMed
  14. Syst Biol. 2012 Mar;61(2):195-203 - PubMed
  15. Philos Trans R Soc Lond B Biol Sci. 2015 Feb 19;370(1662):20140006 - PubMed
  16. Conserv Biol. 2006 Dec;20(6):1670-8 - PubMed
  17. Glob Ecol Biogeogr. 2014 Aug 1;23(8):836-847 - PubMed
  18. PLoS Biol. 2014 Jun 24;12(6):e1001891 - PubMed
  19. Nature. 2005 Aug 18;436(7053):1016-9 - PubMed
  20. Philos Trans R Soc Lond B Biol Sci. 2015 Feb 19;370(1662):20140013 - PubMed
  21. Evol Bioinform Online. 2007 Feb 14;2:273-6 - PubMed
  22. Curr Biol. 2014 May 5;24(9):919-30 - PubMed
  23. Ecol Lett. 2008 Oct;11(10):1047-53 - PubMed
  24. Science. 2000 Apr 14;288(5464):328-30 - PubMed
  25. BMC Evol Biol. 2015 Apr 17;15:65 - PubMed
  26. Nature. 2007 Feb 15;445(7129):757-60 - PubMed
  27. Evolution. 2013 Feb;67(2):368-77 - PubMed
  28. Trends Plant Sci. 2003 Sep;8(9):446-52 - PubMed
  29. Mol Ecol. 2009 Oct;18(19):4061-72 - PubMed
  30. Nature. 2012 Nov 15;491(7424):444-8 - PubMed
  31. Evol Bioinform Online. 2014 Aug 03;10:127-30 - PubMed
  32. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19374-9 - PubMed
  33. Conserv Biol. 2010 Aug;24(4):1052-8 - PubMed
  34. Ecol Evol. 2014 Jan;4(1):50-8 - PubMed
  35. Ecol Evol. 2017 Mar 21;7(8):2735-2746 - PubMed
  36. J Theor Biol. 2008 Apr 21;251(4):606-15 - PubMed
  37. Science. 2011 Nov 11;334(6057):796-9 - PubMed
  38. Nat Commun. 2016 Jan 12;7:10359 - PubMed
  39. Nature. 2008 May 8;453(7192):175-83 - PubMed
  40. Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):255-68 - PubMed
  41. Biol Lett. 2013 Jun 12;9(4):20130343 - PubMed
  42. Proc Biol Sci. 2000 Mar 22;267(1443):613-20 - PubMed
  43. Proc Biol Sci. 2013 Jul 03;280(1765):20131092 - PubMed
  44. PLoS One. 2007 Mar 14;2(3):e296 - PubMed
  45. Bioinformatics. 2006 Feb 1;22(3):363-4 - PubMed

Publication Types