Display options
Share it on

Hum Brain Mapp. 2017 Jul;38(7):3623-3636. doi: 10.1002/hbm.23617. Epub 2017 Apr 21.

Altered eigenvector centrality is related to local resting-state network functional connectivity in patients with longstanding type 1 diabetes mellitus.

Human brain mapping

Eelco van Duinkerken, Menno M Schoonheim, Richard G IJzerman, Annette C Moll, Jesus Landeira-Fernandez, Martin Klein, Michaela Diamant, Frank J Snoek, Frederik Barkhof, Alle-Meije Wink

Affiliations

  1. Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands.
  2. Amsterdam Diabetes Center/Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands.
  3. Department of Psychology, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.
  4. Department of Anatomy and Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.
  5. Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands.
  6. Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
  7. Institute of Neurology and Healthcare Engineering, University College London, London, United Kingdom.

PMID: 28429383 PMCID: PMC6866895 DOI: 10.1002/hbm.23617

Abstract

INTRODUCTION: Longstanding type 1 diabetes (T1DM) is associated with microangiopathy and poorer cognition. In the brain, T1DM is related to increased functional resting-state network (RSN) connectivity in patients without, which was decreased in patients with clinically evident microangiopathy. Subcortical structure seems affected in both patient groups. How these localized alterations affect the hierarchy of the functional network in T1DM is unknown. Eigenvector centrality mapping (ECM) and degree centrality are graph theoretical methods that allow determining the relative importance (ECM) and connectedness (degree centrality) of regions within the whole-brain network hierarchy.

METHODS: Therefore, ECM and degree centrality of resting-state functional MRI-scans were compared between 51 patients with, 53 patients without proliferative retinopathy, and 49 controls, and associated with RSN connectivity, subcortical gray matter volume, and cognition.

RESULTS: In all patients versus controls, ECM and degree centrality were lower in the bilateral thalamus and the dorsal striatum, with lowest values in patients without proliferative retinopathy (P

CONCLUSION: The findings suggested reorganization of the hierarchy of the cortical connectivity network in patients without proliferative retinopathy, which is lost with disease progression. Centrality seems sensitive to capture early T1DM-related functional connectivity alterations, but not disease progression. Hum Brain Mapp 38:3623-3636, 2017. © 2017 Wiley Periodicals, Inc.

© 2017 Wiley Periodicals, Inc.

Keywords: cognition; eigenvector centrality mapping; graph theory; resting-state fMRI; type 1 diabetes

References

  1. Neuroimage. 2013 Jan 1;64:728-40 - PubMed
  2. Neurology. 2017 Mar 7;88(10):952-960 - PubMed
  3. Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3660-5 - PubMed
  4. Med Image Anal. 2001 Jun;5(2):143-56 - PubMed
  5. Eur J Pharmacol. 2008 May 6;585(1):88-96 - PubMed
  6. Brain Connect. 2012;2(5):265-74 - PubMed
  7. Neuroimage. 2015 Jan 15;105:536-51 - PubMed
  8. Diabetes. 2009 Oct;58(10):2335-43 - PubMed
  9. Diabetes. 2012 Jul;61(7):1814-21 - PubMed
  10. Psychosom Med. 2015 Jul-Aug;77(6):622-30 - PubMed
  11. AJNR Am J Neuroradiol. 2016 Nov;37(11):2115-2122 - PubMed
  12. Neuroimage. 2013 Aug 1;76:183-201 - PubMed
  13. Diabetes Care. 2005 Mar;28(3):726-35 - PubMed
  14. Hum Brain Mapp. 2014 May;35(5):2383-93 - PubMed
  15. PLoS One. 2010 Oct 28;5(10):e13701 - PubMed
  16. Am Psychol. 2016 Oct;71(7):563-576 - PubMed
  17. Ophthalmology. 2008 Nov;115(11):1859-68 - PubMed
  18. Diabetes. 2008 Nov;57(11):3083-9 - PubMed
  19. Diabetologia. 2011 Feb;54(2):245-55 - PubMed
  20. Nat Neurosci. 2003 Jul;6(7):750-7 - PubMed
  21. Diabetes. 2017 Mar;66(3):754-762 - PubMed
  22. Neuroimage. 2014 May 15;92:381-97 - PubMed
  23. Mult Scler. 2014 Jul;20(8):1058-65 - PubMed
  24. Neurobiol Aging. 2015 Jan;36(1):401-12 - PubMed
  25. Muscle Nerve. 2008 Feb;37(2):231-40 - PubMed
  26. Ann Intern Med. 1996 Feb 15;124(4):379-88 - PubMed
  27. Curr Diab Rep. 2012 Aug;12(4):346-54 - PubMed
  28. Neuroimage. 2002 Sep;17(1):479-89 - PubMed
  29. Diabetologia. 1995 Apr;38(4):437-44 - PubMed
  30. Diabetologia. 2015 May;58(5):942-50 - PubMed
  31. Diabetes Care. 2014 Sep;37(9):2483-90 - PubMed
  32. Neuroimage. 2002 Oct;17(2):825-41 - PubMed
  33. Nat Neurosci. 2015 Nov;18(11):1664-71 - PubMed
  34. Neuroimage. 2011 Jun 1;56(3):907-22 - PubMed
  35. Psychosom Med. 2016 Jul-Aug;78(6):740-9 - PubMed
  36. Neuroimage Clin. 2014 Jun 12;5:69-76 - PubMed
  37. Neuroimage. 2012 Feb 1;59(3):2142-54 - PubMed
  38. Diabetes. 2006 Feb;55(2):326-33 - PubMed
  39. Hum Brain Mapp. 2016 Apr;37(4):1486-511 - PubMed
  40. PLoS One. 2010 Apr 27;5(4):e10232 - PubMed
  41. Diabetes. 2005 Jun;54(6):1615-25 - PubMed

Publication Types

Grant support