Display options
Share it on

ACS Nano. 2017 May 23;11(5):4564-4570. doi: 10.1021/acsnano.6b08567. Epub 2017 Apr 27.

Omnidirectional Harvesting of Weak Light Using a Graphene Quantum Dot-Modified Organic/Silicon Hybrid Device.

ACS nano

Meng-Lin Tsai, Dung-Sheng Tsai, Libin Tang, Lih-Juann Chen, Shu Ping Lau, Jr-Hau He

Affiliations

  1. Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Kingdom of Saudi Arabia.
  2. Institute of Photonics and Optoelectronics & Department of Electrical Engineering, National Taiwan University , Taipei 10617, Taiwan, Republic of China.
  3. Department of Applied Physics, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong SAR.
  4. Department of Materials Science and Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, Republic of China.

PMID: 28430415 DOI: 10.1021/acsnano.6b08567

Abstract

Despite great improvements in traditional inorganic photodetectors and photovoltaics, more progress is needed in the detection/collection of light at low-level conditions. Traditional photodetectors tend to suffer from high noise when operated at room temperature; therefore, these devices require additional cooling systems to detect weak or dim light. Conventional solar cells also face the challenge of poor light-harvesting capabilities in hazy or cloudy weather. The real world features such varying levels of light, which makes it important to develop strategies that allow optical devices to function when conditions are less than optimal. In this work, we report an organic/inorganic hybrid device that consists of graphene quantum dot-modified poly(3,4-ethylenedioxythiophene) polystyrenesulfonate spin-coated on Si for the detection/harvest of weak light. The hybrid configuration provides the device with high responsivity and detectability, omnidirectional light trapping, and fast operation speed. To demonstrate the potential of this hybrid device in real world applications, we measured near-infrared light scattered through human tissue to demonstrate noninvasive oximetric photodetection as well as characterized the device's photovoltaic properties in outdoor (i.e., weather-dependent) and indoor weak light conditions. This organic/inorganic device configuration demonstrates a promising strategy for developing future high-performance low-light compatible photodetectors and photovoltaics.

Keywords: PEDOT:PSS; graphene quantum dots; hybrid; omnidirectional; weak light

Publication Types