Display options
Share it on

Rep Pract Oncol Radiother. 2017 May-Jun;22(3):201-208. doi: 10.1016/j.rpor.2017.02.002. Epub 2017 Apr 22.

CT- and MRI-based gross target volume comparison in vestibular schwannomas.

Reports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology

Bhudevi Soubhagya N Kulkarni, Harjot Bajwa, Mukka Chandrashekhar, Sunil Dutt Sharma, Rohith Singareddy, Dileep Gudipudi, Shabbir Ahmad, Alok Kumar, N V N Madusudan Sresty, Alluri Krishnam Raju

Affiliations

  1. Basavatarakam Indo American Cancer Hospital and Research Center, Hyderabad 500035, Telangana, India.
  2. Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500 085, Telangana, India.
  3. Radiological Physics & Advisory Division, Bhabha Atomic Research Centre, CTCRS, Anushaktinagar, Mumbai 400094, India.
  4. Clearmedi Healthcare Pvt. Ltd., Kolkata Area, India.

PMID: 28461783 PMCID: PMC5403802 DOI: 10.1016/j.rpor.2017.02.002

Abstract

AIM: This study represents an enumeration and comparison of gross target volumes (GTV) as delineated independently on contrast-enhanced computed tomography (CT) and T1 and T2 weighted magnetic resonance imaging (MRI) in vestibular schwannomas (VS).

BACKGROUND: Multiple imaging in radiotherapy improves target localization.

METHODS AND MATERIALS: 42 patients of VS were considered for this prospective study with one patient showing bilateral tumor. The GTV was delineated separately on CT and MRI. Difference in volumes were estimated individually for all the 43 lesions and similarity was studied between CT and T1 and T2 weighted MRI.

RESULTS: The male to female ratio for VS was found to be 1:1.3. The tumor was right sided in 34.9% and left sided in 65.1%. Tumor volumes (TV) on CT image sets were ranging from 0.251 cc to 27.27 cc. The TV for CT, MRI T1 and T2 weighted were 5.15 ± 5.2 cc, 5.8 ± 6.23 cc, and 5.9 ± 6.13 cc, respectively. Compared to MRI, CT underestimated the volumes. The mean dice coefficient between CT versus T1 and CT versus T2 was estimated to be 68.85 ± 18.3 and 66.68 ± 20.3, respectively. The percentage of volume difference between CT and MRI (%VD: mean ± SD for T1; 28.84 ± 15.0, T2; 35.74 ± 16.3) and volume error (%VE: T1; 18.77 ± 10.1, T2; 23.17 ± 13.93) were found to be significant, taking the CT volumes as the baseline.

CONCLUSIONS: MRI with multiple sequences should be incorporated for tumor volume delineation and they provide a clear boundary between the tumor and normal tissue with critical structures nearby.

Keywords: Computed tomography (CT); Magnetic resonance imaging (MRI); T1 weighted and T2 weighted; Vestibular schwannomas (VS)

References

  1. Radiother Oncol. 1999 Feb;50(2):151-6 - PubMed
  2. Rep Pract Oncol Radiother. 2016 Jul-Aug;21(4):395-8 - PubMed
  3. J Neurol Neurosurg Psychiatry. 1999 Jun;66(6):768-71 - PubMed
  4. Int J Radiat Oncol Biol Phys. 1996 Apr 1;35(1):117-24 - PubMed
  5. Oncol Lett. 2013 Jan;5(1):57-62 - PubMed
  6. Contemp Oncol (Pozn). 2014;18(1):60-6 - PubMed
  7. Stereotact Funct Neurosurg. 1998 Oct;70 Suppl 1:74-9 - PubMed
  8. Rep Pract Oncol Radiother. 2016 Jul-Aug;21(4):336-55 - PubMed
  9. Otolaryngol Head Neck Surg. 2004 May;130(5):611-6 - PubMed
  10. Int J Radiat Oncol Biol Phys. 2003 Aug 1;56(5):1390-6 - PubMed
  11. J Cancer Res Ther. 2007 Apr-Jun;3(2):121-3 - PubMed
  12. Semin Radiat Oncol. 2008 Oct;18(4):215-22 - PubMed
  13. Radiother Oncol. 2005 May;75(2):217-23 - PubMed
  14. J Appl Clin Med Phys. 2010 May 20;11(3):3192 - PubMed
  15. Acta Neurochir Suppl (Wien). 1993;58:104-7 - PubMed
  16. Bangladesh Med Res Counc Bull. 2011 Dec;37(3):92-6 - PubMed
  17. J Clin Neurosci. 2014 Jun;21(6):914-8 - PubMed
  18. Otolaryngol Clin North Am. 1992 Jun;25(3):707-28 - PubMed
  19. Int J Radiat Oncol Biol Phys. 2003 Oct 1;57(2):481-8 - PubMed
  20. Int J Radiat Oncol Biol Phys. 2002 Jul 15;53(4):1051-7 - PubMed
  21. Int J Radiat Oncol Biol Phys. 2001 Aug 1;50(5):1265-78 - PubMed
  22. Neurosurg Rev. 1992;15(2):117-23 - PubMed
  23. Int J Radiat Oncol Biol Phys. 2001 Jul 1;50(3):821-7 - PubMed
  24. Neurosurg Rev. 2011 Jul;34(3):265-77; discussion 277-9 - PubMed
  25. Rep Pract Oncol Radiother. 2016 Jul-Aug;21(4):304-18 - PubMed
  26. Rep Pract Oncol Radiother. 2016 Jul-Aug;21(4):319-24 - PubMed
  27. AJNR Am J Neuroradiol. 2009 May;30(5):985-91 - PubMed
  28. Radiother Oncol. 2001 Jul;60(1):49-59 - PubMed
  29. J Cancer Res Ther. 2008 Jan-Mar;4(1):9-13 - PubMed
  30. Br J Radiol. 2006 Sep;79 Spec No 1:S2-15 - PubMed
  31. Am J Otol. 1990 May;11(3):216-32 - PubMed
  32. Int J Radiat Oncol Biol Phys. 1997 Dec 1;39(5):983-8 - PubMed
  33. Int J Radiat Oncol Biol Phys. 1991 Nov;21(6):1653-67 - PubMed
  34. IEEE Trans Med Imaging. 2006 Nov;25(11):1451-61 - PubMed
  35. J Laryngol Otol. 1993 Dec;107(12):1087-98 - PubMed
  36. Int J Radiat Oncol Biol Phys. 2000 Mar 15;46(5):1309-17 - PubMed
  37. Neuro Oncol. 2006 Jan;8(1):1-11 - PubMed
  38. Neurosurgery. 1997 Jan;40(1):1-9; discussion 9-10 - PubMed
  39. J Appl Clin Med Phys. 2010 Jun 09;11(3):3175 - PubMed
  40. Rep Pract Oncol Radiother. 2016 Jul-Aug;21(4):399-406 - PubMed
  41. J Neurosurg. 2001 Jan;94(1):1-6 - PubMed

Publication Types