Display options
Share it on

Biol Open. 2017 Jun 15;6(6):800-809. doi: 10.1242/bio.025692.

Morphology and cardiac physiology are differentially affected by temperature in developing larvae of the marine fish mahi-mahi (.

Biology open

Prescilla Perrichon, Christina Pasparakis, Edward M Mager, John D Stieglitz, Daniel D Benetti, Martin Grosell, Warren W Burggren

Affiliations

  1. University of North Texas, Department of Biological Sciences, Denton, TX 76203, USA [email protected].
  2. Division of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL 33149, USA.
  3. University of North Texas, Department of Biological Sciences, Denton, TX 76203, USA.

PMID: 28432103 PMCID: PMC5483030 DOI: 10.1242/bio.025692

Abstract

Cardiovascular performance is altered by temperature in larval fishes, but how acute versus chronic temperature exposures independently affect cardiac morphology and physiology in the growing larva is poorly understood. Consequently, we investigated the influence of water temperature on cardiac plasticity in developing mahi-mahi. Morphological (e.g. standard length, heart angle) and physiological cardiac variables (e.g. heart rate

© 2017. Published by The Company of Biologists Ltd.

Keywords: Cardiac output; Development; Heart rate; Mahi-mahi; Q10; Stroke volume

Conflict of interest statement

Competing interestsM. Grosell is a Maytag chair of Ichtyology.

References

  1. Comp Biochem Physiol A Mol Integr Physiol. 1999 Dec;124(4):407-12 - PubMed
  2. Am J Physiol Regul Integr Comp Physiol. 2000 Nov;279(5):R1634-40 - PubMed
  3. Naturwissenschaften. 2001 Apr;88(4):137-46 - PubMed
  4. Nature. 2002 Mar 28;416(6879):389-95 - PubMed
  5. Am J Physiol Regul Integr Comp Physiol. 2002 Oct;283(4):R911-7 - PubMed
  6. J Exp Biol. 2004 Jul;207(Pt 15):2539-50 - PubMed
  7. Am J Physiol Regul Integr Comp Physiol. 2004 Dec;287(6):R1399-406 - PubMed
  8. Science. 2005 Jun 24;308(5730):1912-5 - PubMed
  9. J Exp Biol. 2005 Jun;208(Pt 11):2123-34 - PubMed
  10. Comp Biochem Physiol A Mol Integr Physiol. 2005 Aug;141(4):430-9 - PubMed
  11. Comp Biochem Physiol A Mol Integr Physiol. 2005 Aug;141(4):391-400 - PubMed
  12. Physiol Biochem Zool. 2006 Jan-Feb;79(1):194-201 - PubMed
  13. Comp Biochem Physiol A Mol Integr Physiol. 2007 Jul;147(3):743-9 - PubMed
  14. BMC Biotechnol. 2008 Feb 27;8:21 - PubMed
  15. Nature. 2008 May 15;453(7193):353-7 - PubMed
  16. Science. 2008 Oct 31;322(5902):690-2 - PubMed
  17. Environ Sci Technol. 2009 Jan 1;43(1):201-7 - PubMed
  18. J Exp Biol. 2009 Dec;212(Pt 23):3771-80 - PubMed
  19. J Fish Biol. 2010 Nov;77(8):1793-817 - PubMed
  20. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7086-90 - PubMed
  21. Respir Physiol Neurobiol. 2011 Aug 31;178(1):22-9 - PubMed
  22. Nat Methods. 2012 Jul;9(7):671-5 - PubMed
  23. Circ Res. 1990 Jan;66(1):109-14 - PubMed
  24. J Exp Biol. 2013 Sep 1;216(Pt 17):3208-14 - PubMed
  25. PLoS One. 2014 Feb 14;9(2):e89099 - PubMed
  26. Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):E1510-8 - PubMed
  27. J Fish Biol. 2014 Jun;84(6):1781-92 - PubMed
  28. Environ Sci Technol. 2014 Jun 17;48(12):7053-61 - PubMed
  29. Cardiovasc Res. 2014 Oct 1;104(1):49-60 - PubMed
  30. Sci Rep. 2015 Dec 10;5:17326 - PubMed
  31. Sci Total Environ. 2016 Oct 15;568:952-966 - PubMed
  32. Am J Physiol Regul Integr Comp Physiol. 2016 Oct 1;311(4):R689-R701 - PubMed
  33. Aquat Toxicol. 2016 Dec;181:113-123 - PubMed
  34. Sci Total Environ. 2017 Feb 1;579:797-804 - PubMed
  35. Cardiovasc Eng Technol. 2013 Sep;4(3):234-245 - PubMed
  36. Dev Biol. 1974 Nov;41(1):14-21 - PubMed
  37. Am J Physiol. 1995 Nov;269(5 Pt 2):R1120-5 - PubMed
  38. Braz J Med Biol Res. 1995 Nov-Dec;28(11-12):1291-305 - PubMed
  39. Circ Res. 1996 Aug;79(2):358-62 - PubMed
  40. Physiol Zool. 1998 Mar-Apr;71(2):191-7 - PubMed
  41. Am J Physiol. 1999 Feb;276(2 Pt 2):R505-13 - PubMed

Publication Types