Display options
Share it on

Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6185-6190. doi: 10.1073/pnas.1701092114. Epub 2017 May 30.

Deformable and conformal silk hydrogel inverse opal.

Proceedings of the National Academy of Sciences of the United States of America

Kyungtaek Min, Sookyoung Kim, Sunghwan Kim

Affiliations

  1. Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.
  2. Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; [email protected].
  3. Department of Physics, Ajou University, Suwon 16499, Republic of Korea.

PMID: 28559327 PMCID: PMC5474819 DOI: 10.1073/pnas.1701092114

Abstract

Photonic crystals (PhCs) efficiently manipulate photons at the nanoscale. Applying these crystals to biological tissue that has been subjected to large deformation and humid environments can lead to fascinating bioapplications such as in vivo biosensors and artificial ocular prostheses. These applications require that these PhCs have mechanical durability, deformability, and biocompatibility. Herein, we introduce a deformable and conformal silk hydrogel inverse opal (SHIO); the photonic lattice of this 3D PhC can be deformed by mechanical strain. This SHIO is prepared by the UV cross-linking of a liquid stilbene/silk solution, to give a transparent and elastic hydrogel. The pseudophotonic band gap (pseudo-PBG) of this material can be stably tuned by deformation of the photonic lattice (stretching, bending, and compressing). Proof-of-concept experiments demonstrate that the SHIO can be applied as an ocular prosthesis for better vision, such as that provided by the

Keywords: intraocular pressure sensor; ocular prosthesis; photonic crystal; photo–cross-linking; silk fibroin

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Adv Mater. 2010 Apr 18;22(15):1746-9 - PubMed
  2. Biomaterials. 2015 Oct;67:11-9 - PubMed
  3. Med Phys. 1991 Mar-Apr;18(2):309-12 - PubMed
  4. Science. 2004 Aug 6;305(5685):788-92 - PubMed
  5. Proc Biol Sci. 2013 Feb 20;280(1757):20130077 - PubMed
  6. Biomaterials. 2009 Mar;30(7):1299-308 - PubMed
  7. ACS Appl Mater Interfaces. 2010 Nov;2(11):3257-62 - PubMed
  8. Langmuir. 2006 Jan 31;22(3):1365-8 - PubMed
  9. Annu Rev Biomed Eng. 2012;14:113-28 - PubMed
  10. Prog Biophys Mol Biol. 1972;24:75-106 - PubMed
  11. Nature. 2003 Aug 14;424(6950):852-5 - PubMed
  12. Nat Nanotechnol. 2014 Apr;9(4):306-10 - PubMed
  13. Nano Lett. 2015 May 13;15(5):3358-63 - PubMed
  14. Adv Mater. 2016 Mar 23;28(12 ):2417-20 - PubMed
  15. Science. 2010 Jul 30;329(5991):528-31 - PubMed
  16. Biomaterials. 2011 Aug;32(22):5086-91 - PubMed
  17. Nature. 2000 May 25;405(6785):437-40 - PubMed
  18. Adv Mater. 2010 Aug 24;22(32):3527-31 - PubMed
  19. Science. 1999 Jan 22;283(5401):520-2 - PubMed
  20. J Appl Biomater Funct Mater. 2016 Jul 26;14 (3):e266-76 - PubMed
  21. Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19584-9 - PubMed
  22. Science. 2012 Jun 29;336(6089):1700-3 - PubMed
  23. Nat Mater. 2010 Oct;9(10):821-6 - PubMed
  24. Biomacromolecules. 2011 Apr 11;12(4):1080-6 - PubMed
  25. Adv Healthc Mater. 2015 Apr 22;4(6):792-810 - PubMed
  26. Nat Commun. 2016 Jan 19;7:10374 - PubMed
  27. Ophthalmology. 2012 Apr;119(4):779-88 - PubMed
  28. Invest Ophthalmol Vis Sci. 2015 Aug;56(9):5557-65 - PubMed
  29. Nat Commun. 2014;5:3002 - PubMed
  30. Langmuir. 2009 Jul 21;25(14):8349-56 - PubMed
  31. Vet Ophthalmol. 2004 Jan-Feb;7(1):11-22 - PubMed
  32. Ultrasound Med Biol. 2010 Dec;36(12 ):2132-43 - PubMed
  33. Biol Rev Camb Philos Soc. 2004 Aug;79(3):671-712 - PubMed

Publication Types