Display options
Share it on

Sci Rep. 2017 May 30;7(1):2522. doi: 10.1038/s41598-017-02428-2.

The mobility of small vacancy/helium complexes in tungsten and its impact on retention in fusion-relevant conditions.

Scientific reports

Danny Perez, Luis Sandoval, Sophie Blondel, Brian D Wirth, Blas P Uberuaga, Arthur F Voter

Affiliations

  1. Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA. [email protected].
  2. Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA.
  3. AMA Inc., Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California, 94035, USA.
  4. Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
  5. Materials Science and Technology MST-8, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA.

PMID: 28559588 PMCID: PMC5449393 DOI: 10.1038/s41598-017-02428-2

Abstract

Tungsten is a promising plasma facing material for fusion reactors. Despite many favorable properties, helium ions incoming from the plasma are known to dramatically affect the microstructure of tungsten, leading to bubble growth, blistering, and/or to the formation of fuzz. In order to develop mitigation strategies, it is essential to understand the atomistic processes that lead to bubble formation and subsequent microstructural changes. In this work, we use large-scale Accelerated Molecular Dynamics simulations to investigate small (Nā€‰=ā€‰1,2) V

References

  1. Phys Rev B Condens Matter. 1985 Jul 15;32(2):1353 - PubMed
  2. J Phys Condens Matter. 2017 Apr 12;29(14 ):145201 - PubMed
  3. J Phys Condens Matter. 2016 Feb 17;28(6):064004 - PubMed
  4. Phys Rev Lett. 2015 Mar 13;114(10):105502 - PubMed
  5. Phys Rev B Condens Matter. 1993 Jun 1;47(22):14771-14777 - PubMed
  6. J Chem Theory Comput. 2016 Jan 12;12(1):18-28 - PubMed

Publication Types