Display options
Share it on

Int Educ Res J. 2016 Dec;2(12):91-97.

RAPAMYCIN INCREASES LENGTH AND MECHANOSENSORY FUNCTION OF PRIMARY CILIA IN RENAL EPITHELIAL AND VASCULAR ENDOTHELIAL CELLS.

International education and research journal

Rinzhin T Sherpa, Kimberly F Atkinson, Viviana P Ferreira, Surya M Nauli

Affiliations

  1. Department of Biomedical & Pharmaceutical Sciences, Chapman University, Irvine, CA.
  2. Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH.

PMID: 28529994 PMCID: PMC5436805

Abstract

Primary cilia arebiophysically-sensitive organelles responsible for sensing fluid-flow and transducing this stimulus into intracellular responses. Previous studies have shown that the primary cilia mediate flow-induced calcium influx, and sensitivity of cilia function to flow is correlated to cilia length. Cells with abnormal cilia length or function can lead to a host of diseases that are collectively termed as ciliopathies. Rapamycin, a potent inhibitor of mTOR (mammalian target of rapamycin), has been demonstrated to be a potential pharmacological agent against the aberrant mTOR signaling seen in ciliopathies such as polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC). Here we look at the effects of rapamycin on ciliary length and function for the first time. Compared to controls, primary cilia in rapamycin-treated porcine renal epithelial and mouse vascular endothelial cells showed a significant increase in length. Graded increases in fluid-shear stress further indicates that rapamycin enhances cilia sensitivity to fluid flow. Treatment with rapamycin led to G0 arrest in porcine epithelial cells while no significant change in cell cycle were observed in rapamycin-treated mouse epithelial or endothelial cells, indicating a species-specific effect of rapamycin. Given the previousin vitro and in vivo studies establishing rapamycin as a potential therapeutic agent for ciliopathies, such as PKD and TSC, our studies show that rapamycin enhances ciliary function and sensitivity to fluid flow. The results of our studies suggest a potential ciliotherapeutic effect of rapamycin.

Keywords: cilium; kidney; mechanosensation; shear-stress; vascular

References

  1. Proc Assoc Am Physicians. 1995 Oct;107(3):314-23 - PubMed
  2. Kidney Int. 2010 Oct;78(8):754-61 - PubMed
  3. Cell Mol Life Sci. 2012 Jan;69(1):165-73 - PubMed
  4. Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20678-83 - PubMed
  5. Nature. 2005 Oct 13;437(7061):1018-21 - PubMed
  6. Am J Physiol Renal Physiol. 2006 Jun;290(6):F1320-8 - PubMed
  7. Adv Chronic Kidney Dis. 2010 Mar;17(2):190-204 - PubMed
  8. Cancer Lett. 2015 May 1;360(2):134-40 - PubMed
  9. Am J Physiol Renal Physiol. 2005 Nov;289(5):F978-88 - PubMed
  10. Cell Mol Life Sci. 2014 Jun;71(11):2165-78 - PubMed
  11. J Cell Physiol. 2012 Jan;227(1):70-6 - PubMed
  12. Mol Cell. 2006 Apr 21;22(2):159-68 - PubMed
  13. Nephrology (Carlton). 2012 Nov;17(8):739-47 - PubMed
  14. J Membr Biol. 2001 Nov 1;184(1):71-9 - PubMed
  15. J Am Soc Nephrol. 2010 Mar;21(3):489-97 - PubMed
  16. Front Physiol. 2014 Feb 26;5:72 - PubMed
  17. Development. 2009 Sep;136(18):3089-98 - PubMed
  18. J Am Soc Nephrol. 2006 Apr;17(4):1015-25 - PubMed
  19. Am J Physiol Renal Physiol. 2012 Jul 1;303(1):F1-10 - PubMed
  20. Nat Genet. 2003 Feb;33(2):129-37 - PubMed
  21. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5286-91 - PubMed
  22. Nat Commun. 2016 Mar 02;7:10786 - PubMed
  23. J Am Soc Nephrol. 2005 Jan;16(1):46-51 - PubMed
  24. Am J Physiol Heart Circ Physiol. 2013 Jan 1;304(1):H33-41 - PubMed
  25. Mol Cell Biol. 2004 Jan;24(1):200-16 - PubMed
  26. Proc Natl Acad Sci U S A. 2012 Feb 7;109 (6):2021-6 - PubMed
  27. Am J Physiol Renal Physiol. 2012 Aug 15;303(4):F584-92 - PubMed
  28. PLoS One. 2016 Aug 25;11(8):e0161525 - PubMed
  29. Methods Cell Biol. 2009;94:137-60 - PubMed
  30. Am J Physiol Renal Physiol. 2007 Mar;292(3):F930-45 - PubMed
  31. BMC Cell Biol. 2013 Dec 05;14:55 - PubMed
  32. J Am Soc Nephrol. 2008 Jul;19(7):1300-10 - PubMed
  33. Nephrol Dial Transplant. 2006 Mar;21(3):598-604 - PubMed
  34. G3 (Bethesda). 2016 Aug 09;6(8):2479-87 - PubMed
  35. Hypertension. 2011 Aug;58(2):325-31 - PubMed
  36. Curr Biol. 2005 Oct 25;15(20):1861-6 - PubMed
  37. J Am Soc Nephrol. 2010 Mar;21(3):390-1 - PubMed
  38. Methods Enzymol. 2013;525:1-20 - PubMed
  39. Hum Mol Genet. 2011 Jan 15;20(2):354-67 - PubMed
  40. Gastroenterology. 2006 Dec;131(6):1856-69 - PubMed
  41. Blood. 2007 Apr 15;109(8):3509-12 - PubMed
  42. Nephrol Dial Transplant. 2005 Jan;20(1):13-5 - PubMed
  43. Am J Physiol. 1993 Sep;265(3 Pt 2):F416-24 - PubMed
  44. Circ Res. 2009 Apr 10;104(7):860-9 - PubMed
  45. Hum Mol Genet. 2009 Jun 15;18(12):2166-76 - PubMed
  46. Mol Cell. 2002 Sep;10(3):457-68 - PubMed
  47. J Geriatr Cardiol. 2014 Mar;11(1):63-73 - PubMed
  48. Nat Cell Biol. 2010 Nov;12 (11):1115-22 - PubMed
  49. Circulation. 2014 Feb 11;129(6):660-72 - PubMed
  50. Nephrol Dial Transplant. 2014 Dec;29(12):2194-201 - PubMed
  51. Gastroenterology. 2006 Sep;131(3):911-20 - PubMed
  52. Nat Genet. 2005 Oct;37(10):1135-40 - PubMed
  53. Curr Opin Genet Dev. 2009 Jun;19(3):220-9 - PubMed
  54. Kidney Int. 2016 Jun;89(6):1307-23 - PubMed
  55. Circulation. 2008 Mar 4;117(9):1161-71 - PubMed
  56. In Vitro. 1976 Oct;12(10):670-7 - PubMed
  57. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5466-71 - PubMed
  58. Am J Hum Genet. 2016 Aug 4;99(2):460-9 - PubMed
  59. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3915-20 - PubMed
  60. Nat Rev Nephrol. 2009 Apr;5(4):221-8 - PubMed
  61. Kidney Int. 2005 Dec;68(6):2599-607 - PubMed
  62. Nat Rev Mol Cell Biol. 2000 Oct;1(1):11-21 - PubMed
  63. Dev Cell. 2010 Dec 14;19(6):792-4 - PubMed
  64. J Am Soc Nephrol. 2006 Dec;17(12):3424-37 - PubMed

Publication Types

Grant support