Display options
Share it on

Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5522-E5529. doi: 10.1073/pnas.1707849114. Epub 2017 Jun 26.

Materials and processing approaches for foundry-compatible transient electronics.

Proceedings of the National Academy of Sciences of the United States of America

Jan-Kai Chang, Hui Fang, Christopher A Bower, Enming Song, Xinge Yu, John A Rogers

Affiliations

  1. Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
  2. Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
  3. Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115.
  4. X-Celeprint, Inc., Durham, NC 27709.
  5. Department of Materials Science, Fudan University, Shanghai 200433, People's Republic of China.
  6. Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801; [email protected].
  7. Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208.
  8. Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208.
  9. Department of Neurological Surgery, Northwestern University, Evanston, IL 60208.
  10. Department of Chemistry, Northwestern University, Evanston, IL 60208.
  11. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208.
  12. Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208.
  13. Simpson Querrey Institute, Northwestern University, Evanston, IL 60208.
  14. Feinberg School of Medicine, Northwestern University, Evanston, IL 60208.
  15. Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208.

PMID: 28652373 PMCID: PMC5514770 DOI: 10.1073/pnas.1707849114

Abstract

Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (

Keywords: biodegradable electronics; hydrolysis; soft electronics; transfer printing; undercut etching

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Nat Mater. 2016 Jul;15(7):782-791 - PubMed
  2. Biomaterials. 1996 Jan;17(2):103-14 - PubMed
  3. Nat Commun. 2015 May 26;6:7170 - PubMed
  4. Nature. 2011 Nov 16;479(7373):309 - PubMed
  5. ACS Nano. 2014 Jun 24;8(6):5843-51 - PubMed
  6. Adv Mater. 2014 Nov 19;26(43):7371-7 - PubMed
  7. Chem Soc Rev. 2014 Jan 21;43(2):588-610 - PubMed
  8. Biomaterials. 1996 Jan;17(2):93-102 - PubMed
  9. Adv Mater. 2014 Jun 18;26(23):3905-11 - PubMed
  10. Adv Mater. 2013 Jul 12;25(26):3526-31 - PubMed
  11. ACS Appl Mater Interfaces. 2015 May 6;7(17):9297-305 - PubMed
  12. Nano Lett. 2015 Jul 8;15(7):4664-71 - PubMed
  13. Adv Mater. 2015 Jan 7;27(1):47-52 - PubMed
  14. Small. 2010 Nov 22;6(22):2553-7 - PubMed
  15. Nature. 2016 Feb 4;530(7588):71-6 - PubMed
  16. Adv Mater. 2010 Feb 2;22(5):651-5 - PubMed
  17. J Neurosci Methods. 2011 Jun 15;198(2):158-71 - PubMed
  18. Adv Mater. 2012 Oct 9;24(39):5284-318 - PubMed
  19. Science. 2012 Sep 28;337(6102):1640-4 - PubMed
  20. Nano Lett. 2015 May 13;15(5):2801-8 - PubMed
  21. Adv Healthc Mater. 2012 May;1(3):248-66 - PubMed
  22. Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11682-11687 - PubMed

Publication Types