Display options
Share it on

Pathogens. 2017 Jun 08;6(2). doi: 10.3390/pathogens6020024.

Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons.

Pathogens (Basel, Switzerland)

Aldo Pourchet, Aram S Modrek, Dimitris G Placantonakis, Ian Mohr, Angus C Wilson

Affiliations

  1. Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA. [email protected].
  2. Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA. [email protected].
  3. Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA. [email protected].
  4. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA. [email protected].
  5. Brain Tumor Center, New York University School of Medicine, New York, NY 10016, USA. [email protected].
  6. Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA. [email protected].
  7. Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA. [email protected].
  8. Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA. [email protected].
  9. Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA. [email protected].
  10. Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA. [email protected].
  11. Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA. [email protected].

PMID: 28594343 PMCID: PMC5488658 DOI: 10.3390/pathogens6020024

Abstract

Herpes simplex virus 1 (HSV-1) uses latency in peripheral ganglia to persist in its human host, however, recurrent reactivation from this reservoir can cause debilitating and potentially life-threatening disease. Most studies of latency use live-animal infection models, but these are complex, multilayered systems and can be difficult to manipulate. Infection of cultured primary neurons provides a powerful alternative, yielding important insights into host signaling pathways controlling latency. However, small animal models do not recapitulate all aspects of HSV-1 infection in humans and are limited in terms of the available molecular tools. To address this, we have developed a latency model based on human neurons differentiated in culture from an NIH-approved embryonic stem cell line. The resulting neurons are highly permissive for replication of wild-type HSV-1, but establish a non-productive infection state resembling latency when infected at low viral doses in the presence of the antivirals acyclovir and interferon-α. In this state, viral replication and expression of a late viral gene marker are not detected but there is an accumulation of the viral latency-associated transcript (LAT) RNA. After a six-day establishment period, antivirals can be removed and the infected cultures maintained for several weeks. Subsequent treatment with sodium butyrate induces reactivation and production of new infectious virus. Human neurons derived from stem cells provide the appropriate species context to study this exclusively human virus with the potential for more extensive manipulation of the progenitors and access to a wide range of preexisting molecular tools.

Keywords: HSV-1; alphaherpesvirus; embryonic stem cells; herpes simplex virus; human; latency; primary neurons; reactivation

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Nat Biotechnol. 2005 May;23(5):601-6 - PubMed
  2. J Virol. 2007 Jun;81(11):6106-10 - PubMed
  3. J Virol. 2012 Dec;86(23):12741-59 - PubMed
  4. J Virol. 1991 Aug;65(8):4001-5 - PubMed
  5. Virus Genes. 2005 Oct;31(2):223-7 - PubMed
  6. Laryngoscope. 2011 Oct;121(10):2268-75 - PubMed
  7. Adv Virus Res. 2016;94:53-80 - PubMed
  8. J Vis Exp. 2012 Apr 02;(62):null - PubMed
  9. PLoS Pathog. 2015 Jun 04;11(6):e1004885 - PubMed
  10. J Virol. 1988 Feb;62(2):393-9 - PubMed
  11. J Neuroimmunol. 2017 Jul 15;308:65-101 - PubMed
  12. J Neurovirol. 2005 Jul;11(3):306-17 - PubMed
  13. Pathogens. 2017 Feb 07;6(1):null - PubMed
  14. Virology. 1979 Apr 15;94(1):228-31 - PubMed
  15. Clin Microbiol Rev. 1997 Jul;10(3):419-43 - PubMed
  16. J Comp Neurol. 2003 Dec 1;467(1):1-10 - PubMed
  17. J Biomed Biotechnol. 2012;2012:612316 - PubMed
  18. Nat Clin Pract Neurol. 2007 Feb;3(2):82-94 - PubMed
  19. Nat Neurosci. 2015 Jan;18(1):25-35 - PubMed
  20. J Virol. 1989 Feb;63(2):759-68 - PubMed
  21. J Virol. 1988 Mar;62(3):749-56 - PubMed
  22. Mol Immunol. 2011 Mar;48(6-7):835-45 - PubMed
  23. Science. 1998 Nov 6;282(5391):1145-7 - PubMed
  24. Cell Rep. 2017 Jan 31;18(5):1312-1323 - PubMed
  25. J Virol. 2017 May 26;91(12 ): - PubMed
  26. J Virol. 1987 Jul;61(7):2311-5 - PubMed
  27. PLoS One. 2012;7(12):e53010 - PubMed
  28. J Virol. 2011 Jul;85(13):6220-33 - PubMed
  29. Cell Host Microbe. 2015 Dec 9;18(6):649-58 - PubMed
  30. PLoS Pathog. 2014 Nov 06;10(11):e1004503 - PubMed
  31. J Virol. 2014 Feb;88(4):2337-9 - PubMed
  32. PLoS Pathog. 2015 Jul 08;11(7):e1005028 - PubMed
  33. Otol Neurotol. 2012 Jan;33(1):87-92 - PubMed
  34. N Engl J Med. 1987 Jun 4;316(23):1444-9 - PubMed
  35. Invest Ophthalmol. 1969 Jun;8(3):346-50 - PubMed
  36. J Infect Dis. 1974 Jul;130(1):16-27 - PubMed
  37. Nat Rev Neurosci. 2016 Jul;17 (7):424-37 - PubMed
  38. Invest Ophthalmol Vis Sci. 1991 Sep;32(10):2741-6 - PubMed
  39. J Virol. 2011 Jul;85(13):6678-86 - PubMed
  40. J Virol. 1994 Mar;68(3):1271-82 - PubMed
  41. J Virol. 2003 Sep;77(17):9192-203 - PubMed
  42. Organogenesis. 2014;10(4):365-77 - PubMed
  43. Genes Dev. 1993 Jan;7(1):72-83 - PubMed
  44. Cell Host Microbe. 2015 Dec 9;18(6):639-41 - PubMed
  45. Cell Host Microbe. 2010 Oct 21;8(4):320-30 - PubMed
  46. Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):E4492-501 - PubMed
  47. J Neurosci. 2007 Apr 4;27(14):3734-42 - PubMed
  48. J Neurovirol. 2012 Dec;18(6):456-61 - PubMed
  49. Virology. 1979 May;95(1):265-8 - PubMed
  50. J Virol. 2011 Aug;85(16):8436-42 - PubMed
  51. J Virol. 1987 Dec;61(12):3841-7 - PubMed
  52. Curr Eye Res. 1986 Mar;5(3):241-6 - PubMed
  53. Trends Microbiol. 2012 Dec;20(12):604-11 - PubMed
  54. J Neuroimmune Pharmacol. 2010 Sep;5(3):418-27 - PubMed
  55. Wei Sheng Wu Xue Bao. 2010 Jan;50(1):98-106 - PubMed
  56. J Virol. 1992 Apr;66(4):2150-6 - PubMed
  57. J Exp Med. 1999 Feb 15;189(4):663-72 - PubMed
  58. Proc Natl Acad Sci U S A. 2016 Apr 26;113(17 ):E2403-12 - PubMed
  59. PLoS Pathog. 2012;8(5):e1002679 - PubMed
  60. Brain Res Dev Brain Res. 1995 Jan 14;84(1):109-29 - PubMed
  61. J Virol. 2016 Dec 16;91(1): - PubMed
  62. J Virol. 2011 Jul;85(13):6669-77 - PubMed
  63. Stem Cells. 2009 Mar;27(3):521-32 - PubMed
  64. J Virol. 2015 Aug;89(15):7506-20 - PubMed
  65. J Virol. 2000 Dec;74(24):11464-71 - PubMed
  66. BMJ Case Rep. 2015 Apr 01;2015:null - PubMed
  67. J Neurovirol. 2013 Feb;19(1):75-81 - PubMed
  68. J Neurosci. 1990 Apr;10(4):1268-75 - PubMed
  69. Neuropathol Appl Neurobiol. 1994 Jun;20(3):253-60 - PubMed
  70. Cell. 1990 Feb 23;60(4):585-95 - PubMed
  71. Genes Dev. 2012 Jul 15;26(14):1527-32 - PubMed
  72. J Virol. 2011 Jun;85(11):5628-43 - PubMed
  73. Nat Commun. 2015 Mar 23;6:6500 - PubMed
  74. Methods Mol Biol. 2014;1144:167-79 - PubMed
  75. J Virol. 2017 Jan 3;91(2): - PubMed
  76. PLoS Pathog. 2012 Feb;8(2):e1002540 - PubMed
  77. J Virol. 2003 Oct;77(20):11082-93 - PubMed
  78. N Engl J Med. 1978 May 11;298(19):1068-9 - PubMed

Publication Types

Grant support