Display options
Share it on

AMB Express. 2017 Dec;7(1):138. doi: 10.1186/s13568-017-0437-7. Epub 2017 Jun 26.

Phenotypic and genomic survey on organic acid utilization profile of Pseudomonas mendocina strain S5.2, a vineyard soil isolate.

AMB Express

Teik Min Chong, Jian-Woon Chen, Wah-Seng See-Too, Choo-Yee Yu, Geik-Yong Ang, Yan Lue Lim, Wai-Fong Yin, Catherine Grandclément, Denis Faure, Yves Dessaux, Kok-Gan Chan

Affiliations

  1. Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
  2. UM Omics Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia.
  3. Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
  4. Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette, France.
  5. Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. [email protected].
  6. UM Omics Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia. [email protected].

PMID: 28655216 PMCID: PMC5484659 DOI: 10.1186/s13568-017-0437-7

Abstract

Root exudates are chemical compounds that are released from living plant roots and provide significant energy, carbon, nitrogen and phosphorus sources for microbes inhabiting the rhizosphere. The exudates shape the microflora associated with the plant, as well as influences the plant health and productivity. Therefore, a better understanding of the trophic link that is established between the plant and the associated bacteria is necessary. In this study, a comprehensive survey on the utilization of grapevine and rootstock related organic acids were conducted on a vineyard soil isolate which is Pseudomonas mendocina strain S5.2. Phenotype microarray analysis has demonstrated that this strain can utilize several organic acids including lactic acid, succinic acid, malic acid, citric acid and fumaric acid as sole growth substrates. Complete genome analysis using single molecule real-time technology revealed that the genome consists of a 5,120,146 bp circular chromosome and a 252,328 bp megaplasmid. A series of genetic determinants associated with the carbon utilization signature of the strain were subsequently identified in the chromosome. Of note, the coexistence of genes encoding several iron-sulfur cluster independent isoenzymes in the genome indicated the importance of these enzymes in the events of iron deficiency. Synteny and comparative analysis have also unraveled the unique features of D-lactate dehydrogenase of strain S5.2 in the study. Collective information of this work has provided insights on the metabolic role of this strain in vineyard soil rhizosphere.

Keywords: Carbon utilization enzymes; Grapevine exudates; Organic acids; Pseudomonas mendocina; Single molecule real-time (SMRT) sequencing; Vineyard soil

References

  1. AMB Express. 2016 Dec;6(1):95 - PubMed
  2. Biochemistry. 1992 Oct 27;31(42):10331-7 - PubMed
  3. Annu Rev Plant Biol. 2006;57:233-66 - PubMed
  4. Appl Environ Microbiol. 1999 Oct;65(10):4346-50 - PubMed
  5. FASEB J. 1993 Dec;7(15):1442-9 - PubMed
  6. Genome Res. 2001 Jul;11(7):1246-55 - PubMed
  7. J Genomics. 2016 Aug 05;4:26-8 - PubMed
  8. J Bacteriol. 2000 Dec;182(24):6892-9 - PubMed
  9. FEMS Microbiol Lett. 2005 May 1;246(1):25-31 - PubMed
  10. Bioinformatics. 2014 Jul 15;30(14):2068-9 - PubMed
  11. J Bacteriol. 2004 Oct;186(19):6661-6 - PubMed
  12. Plant Physiol Biochem. 2015 Nov;96:171-9 - PubMed
  13. J Biochem Mol Toxicol. 2006;20(4):198-208 - PubMed
  14. Front Microbiol. 2015 Mar 18;6:214 - PubMed
  15. Bioinformatics. 2016 Mar 15;32(6):929-31 - PubMed
  16. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  17. J Biotechnol. 2016 Mar 10;221:114-5 - PubMed
  18. Bioinformatics. 2007 Apr 15;23(8):1026-8 - PubMed
  19. PLoS One. 2013;8(1):e52673 - PubMed
  20. BMC Genomics. 2008 Feb 08;9:75 - PubMed
  21. J Bacteriol. 2012 Nov;194(22):6366 - PubMed
  22. Appl Environ Microbiol. 2008 Jul;74(13):3977-84 - PubMed
  23. J Bacteriol. 2000 Jun;182(11):3204-9 - PubMed
  24. Biodegradation. 2013 Jun;24(3):437-50 - PubMed
  25. Mol Ecol. 2014 Oct;23(19):4846-61 - PubMed
  26. BMC Bioinformatics. 2013 Jan 16;14:4 - PubMed
  27. Sensors (Basel). 2014 Jul 30;14(8):13913-24 - PubMed
  28. J Bacteriol. 1997 Mar;179(5):1442-51 - PubMed
  29. Int J Syst Evol Microbiol. 2012 Mar;62(Pt 3):716-21 - PubMed
  30. J Bacteriol. 2015 Jul;197(13):2239-47 - PubMed
  31. ISME J. 2008 Dec;2(12):1221-30 - PubMed
  32. Microbiology. 2002 Dec;148(Pt 12):3839-47 - PubMed
  33. Plant Physiol. 1966 Jun;41(6):923-31 - PubMed
  34. J Bacteriol. 1999 Aug;181(15):4676-9 - PubMed

Publication Types