Display options
Share it on

Sci Rep. 2017 May 31;7(1):2545. doi: 10.1038/s41598-017-02779-w.

Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction.

Scientific reports

Cheng-Hua Bai, Dong-Yang Wang, Hong-Fu Wang, Ai-Dong Zhu, Shou Zhang

Affiliations

  1. Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002, China.
  2. Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002, China. [email protected].

PMID: 28566715 PMCID: PMC5451418 DOI: 10.1038/s41598-017-02779-w

Abstract

We propose a scheme to show that the system consisting of two macroscopic oscillators separated in space which are coupled through Coulomb interaction displays the classical-to-quantum transition behavior under the action of optomechanical coupling interaction. Once the optomechanical coupling interaction disappears, the entanglement between the two separated oscillators disappears accordingly and the system will return to classical world even though there exists sufficiently strong Coulomb coupling between the oscillators. In addition, resorting to the squeezing of the cavity field generated by an optical parametric amplifier inside the cavity, we discuss the effect of squeezed light driving on this classical-to-quantum transition behavior instead of injecting the squeezed field directly. The results of numerical simulation show that the present scheme is feasible and practical and has stronger robustness against the environment temperature compared with previous schemes in current experimentally feasible regimes. The scheme might possibly help us to further clarify and grasp the classical-quantum boundary.

References

  1. Sci Rep. 2016 Dec 05;6:38559 - PubMed
  2. Nature. 2002 Jun 13;417(6890):709-11 - PubMed
  3. Nature. 2010 Apr 1;464(7289):697-703 - PubMed
  4. Phys Rev Lett. 2008 Nov 14;101(20):200503 - PubMed
  5. Nature. 2014 Aug 7;512(7512):57-60 - PubMed
  6. Sci Rep. 2014 Dec 19;4:7566 - PubMed
  7. Phys Rev Lett. 1986 Nov 17;57(20):2520-2523 - PubMed
  8. Phys Rev Lett. 2000 Mar 20;84(12):2726-9 - PubMed
  9. Nature. 2011 Oct 05;478(7367):89-92 - PubMed
  10. Sci Rep. 2014 Aug 29;4:6237 - PubMed
  11. Phys Rev A Gen Phys. 1989 Jun 15;39(12):6259-6266 - PubMed
  12. Phys Rev Lett. 1995 May 15;74(20):4091-4094 - PubMed
  13. Phys Rev Lett. 2002 Mar 25;88(12):120401 - PubMed
  14. Nature. 2011 Jul 06;475(7356):359-63 - PubMed
  15. Opt Express. 2011 Dec 5;19(25):25433-40 - PubMed
  16. Phys Rev A Gen Phys. 1987 Jun 15;35(12):5288-5290 - PubMed
  17. Phys Rev Lett. 2004 Dec 31;93(26 Pt 1):266403 - PubMed
  18. Sci Rep. 2016 Sep 14;6:33404 - PubMed
  19. Phys Rev Lett. 2007 Jan 19;98(3):030405 - PubMed
  20. Nature. 2006 Nov 2;444(7115):67-70 - PubMed
  21. Sci Rep. 2016 Apr 19;6:24421 - PubMed
  22. Phys Rev Lett. 2005 Aug 26;95(9):090503 - PubMed
  23. Phys Rev Lett. 2015 Dec 11;115(24):243603 - PubMed
  24. Phys Rev A. 1994 Feb;49(2):1337-1343 - PubMed
  25. Opt Express. 2012 Jun 18;20(13):14547-55 - PubMed
  26. Nature. 2011 Mar 10;471(7337):204-8 - PubMed

Publication Types