Display options
Share it on

Sci Technol Adv Mater. 2017 Apr 28;18(1):307-315. doi: 10.1080/14686996.2017.1314172. eCollection 2017.

Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy.

Science and technology of advanced materials

Kazuhiro Kawashima, Yuji Okamoto, Orazmuhammet Annayev, Nobuo Toyokura, Ryota Takahashi, Mikk Lippmaa, Kenji Itaka, Yoshikazu Suzuki, Nobuyuki Matsuki, Hideomi Koinuma

Affiliations

  1. Fundamental Research Department, Comet Co. Ltd, Tsukuba, Japan.
  2. Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan.
  3. The Technology Centre of Academy of Science and Technology, Ashgabat, Turkmenistan.
  4. Institute for Solid State Physics, University of Tokyo, Chiba, Japan.
  5. Japan Science and Technology Agency, JST PRESTO, Saitama, Japan.
  6. North Japan Research Institute for Sustainable Energy, Hirosaki University, Aomori City, Japan.
  7. Department of Electrical, Electronics and Information Engineering, Faculty of Engineering, Kanagawa University, Yokohama-shi, Japan.
  8. National Institute for Materials Science, NIMS, Tsukuba, Japan.

PMID: 28567176 PMCID: PMC5439393 DOI: 10.1080/14686996.2017.1314172

Abstract

As an extension of combinatorial molecular layer epitaxy via ablation of perovskite oxides by a pulsed excimer laser, we have developed a laser molecular beam epitaxy (MBE) system for parallel integration of nano-scaled thin films of organic-inorganic hybrid materials. A pulsed infrared (IR) semiconductor laser was adopted for thermal evaporation of organic halide (A-site: CH

Keywords: 209 Solar cell / Photovoltaics; 306 Thin film / Coatings; 40 Optical, magnetic and electronic device materials; Combinatorial deposition; IR laser MBE; halide perovskite solar cell; inorganic–organic hybrid material

References

  1. J Phys Chem Lett. 2014 Sep 4;5(17):2927-34 - PubMed
  2. Nanoscale. 2011 Oct 5;3(10):4088-93 - PubMed
  3. J Am Chem Soc. 2009 May 6;131(17):6050-1 - PubMed
  4. J Am Chem Soc. 2014 Apr 9;136(14):5189-92 - PubMed
  5. Adv Mater. 2014 Mar 12;26(10):1584-9 - PubMed
  6. Science. 2013 Oct 18;342(6156):344-7 - PubMed
  7. J Phys Chem Lett. 2015 Oct 1;6(19):3808-14 - PubMed
  8. Science. 2013 Oct 18;342(6156):317-8 - PubMed
  9. Nat Mater. 2004 Jul;3(7):429-38 - PubMed
  10. Nature. 2013 Sep 19;501(7467):395-8 - PubMed
  11. Science. 2013 Oct 18;342(6156):341-4 - PubMed
  12. Science. 1994 Dec 2;266(5190):1540-2 - PubMed
  13. J Am Chem Soc. 2015 Aug 19;137(32):10048-51 - PubMed
  14. Inorg Chem. 2013 Aug 5;52(15):9019-38 - PubMed
  15. Nano Lett. 2015 Aug 12;15(8):5630-4 - PubMed
  16. J Phys Chem Lett. 2014 May 1;5(9):1511-5 - PubMed
  17. Angew Chem Int Ed Engl. 2014 Mar 17;53(12):3151-7 - PubMed
  18. Nat Commun. 2016 Feb 08;7:10334 - PubMed
  19. J Phys Chem Lett. 2016 Mar 3;7(5):905-17 - PubMed

Publication Types