Display options
Share it on

Mol Ther Methods Clin Dev. 2017 May 25;6:8-16. doi: 10.1016/j.omtm.2017.05.005. eCollection 2017 Sep 15.

Single Cell-Based Vector Tracing in Patients with ADA-SCID Treated with Stem Cell Gene Therapy.

Molecular therapy. Methods & clinical development

Yuka Igarashi, Toru Uchiyama, Tomoko Minegishi, Sirirat Takahashi, Nobuyuki Watanabe, Toshinao Kawai, Masafumi Yamada, Tadashi Ariga, Masafumi Onodera

Affiliations

  1. Department of Human Genetics, National Center for Child Health and Development, Tokyo 157-8535, Japan.
  2. Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido 060-8638, Japan.

PMID: 28626778 PMCID: PMC5466583 DOI: 10.1016/j.omtm.2017.05.005

Abstract

Clinical improvement in stem cell gene therapy (SCGT) for primary immunodeficiencies depends on the engraftment levels of genetically corrected cells, and tracing the transgene in each hematopoietic lineage is therefore extremely important in evaluating the efficacy of SCGT. We established a single cell-based droplet digital PCR (sc-ddPCR) method consisting of the encapsulation of a single cell into each droplet, followed by emulsion PCR with primers and probes specific for the transgene. A fluorescent signal in a droplet indicates the presence of a single cell carrying the target gene in its genome, and this system can clearly determine the ratio of transgene-positive cells in the entire population at the genomic level. Using sc-ddPCR, we analyzed the engraftment of vector-transduced cells in two patients with severe combined immunodeficiency (SCID) who were treated with SCGT. Sufficient engraftment of the transduced cells was limited to the T cell lineage in peripheral blood (PB), and a small percentage of CD34

Keywords: ADA-SCID; digital droplet PCR; gene therapy; single cell; vector integration

References

  1. PLoS One. 2014 Nov 06;9(11):e111781 - PubMed
  2. Gene Ther. 2011 May;18(5):479-87 - PubMed
  3. Semin Hematol. 1998 Oct;35(4):291-8 - PubMed
  4. Sci Transl Med. 2011 Aug 24;3(97):97ra79 - PubMed
  5. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12133-8 - PubMed
  6. Clin Immunol. 2005 Nov;117(2):133-43 - PubMed
  7. Clin Immunol. 2015 Dec;161(2):391-3 - PubMed
  8. Blood. 1998 Jan 1;91(1):30-6 - PubMed
  9. Anal Chem. 2011 Nov 15;83(22):8604-10 - PubMed
  10. J Virol. 1998 Mar;72(3):1769-74 - PubMed
  11. N Engl J Med. 1987 Mar 5;316(10 ):589-96 - PubMed
  12. Cell. 2015 May 21;161(5):1187-201 - PubMed
  13. N Engl J Med. 2009 Jan 29;360(5):447-58 - PubMed
  14. Science. 2002 Jun 28;296(5577):2410-3 - PubMed
  15. Nature. 2012 Dec 20;492(7429):438-42 - PubMed
  16. Science. 2000 Apr 28;288(5466):669-72 - PubMed
  17. Sci Transl Med. 2011 Aug 24;3(97):97ra80 - PubMed
  18. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11400-6 - PubMed
  19. Lancet. 2004 Dec 18-31;364(9452):2181-7 - PubMed
  20. J Clin Invest. 2008 Sep;118(9):3132-42 - PubMed
  21. PLoS Genet. 2014 Jan 30;10(1):e1004126 - PubMed
  22. Nat Med. 1998 Jul;4(7):775-80 - PubMed
  23. Mol Ther. 2005 Mar;11(3):483-491 - PubMed
  24. Nat Med. 1995 Oct;1(10):1017-23 - PubMed
  25. Sci Transl Med. 2014 Mar 12;6(227):227ra33 - PubMed
  26. Mol Ther. 2006 Oct;14(4):505-13 - PubMed
  27. Science. 1995 Oct 20;270(5235):470-5 - PubMed
  28. Blood. 2012 Nov 1;120(18):3635-46 - PubMed
  29. Science. 2013 Aug 23;341(6148):1233151 - PubMed
  30. J Clin Invest. 2008 Sep;118(9):3143-50 - PubMed
  31. J Clin Microbiol. 2001 Feb;39(2):485-93 - PubMed
  32. J Clin Immunol. 2015 May;35(4):384-98 - PubMed
  33. Gene Ther. 2004 Apr;11(7):569-73 - PubMed
  34. N Engl J Med. 2010 Jul 22;363(4):355-64 - PubMed

Publication Types