Display options
Share it on

Pharmacol Res Perspect. 2016 Dec 23;5(1):e00282. doi: 10.1002/prp2.282. eCollection 2017 Feb.

Acute cocaine exposure elicits rises in calcium in arousal-related laterodorsal tegmental neurons.

Pharmacology research & perspectives

Mads Ødum Lambert, Theis Højland Ipsen, Kristi Anne Kohlmeier

Affiliations

  1. Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark.

PMID: 28596834 PMCID: PMC5461641 DOI: 10.1002/prp2.282

Abstract

Cocaine has strong reinforcing properties, which underlie its high addiction potential. Reinforcement of use of addictive drugs is associated with rises in dopamine (DA) in mesoaccumbal circuitry. Excitatory afferent input to mesoaccumbal circuitry sources from the laterodorsal tegmental nucleus (LDT). Chronic, systemic cocaine exposure has been shown to have cellular effects on LDT cells, but acute actions of local application have never been demonstrated. Using calcium imaging, we show that acute application of cocaine to mouse brain slices induces calcium spiking in cells of the LDT. Spiking was attenuated by tetrodotoxin (TTX) and low calcium solutions, and abolished by prior exhaustion of intracellular calcium stores. Further, DA receptor antagonists reduced these transients, whereas DA induced rises with similar spiking kinetics. Amphetamine, which also results in elevated levels of synaptic DA, but via a different pharmacological action than cocaine, induced calcium spiking with similar profiles. Although large differences in spiking were not noted in an animal model associated with a heightened proclivity of acquiring addiction-related behavior, the prenatal nicotine exposed mouse (PNE), subtle differences in cocaine's effect on calcium spiking were noted, indicative of a reduction in action of cocaine in the LDT associated with exposure to nicotine during gestation. When taken together, our data indicate that acute actions of cocaine do include effects on LDT cells. Considering the role of intracellular calcium in cellular excitability, and of the LDT in addiction circuitry, our data suggest that cocaine effects in this nucleus may contribute to the high addiction potential of this drug.

Keywords: Arousal; REM sleep; cholinergic; in vitro; mouse

References

  1. Neurosci Lett. 1983 Dec 23;43(1):31-6 - PubMed
  2. Neurosci Lett. 1996 Aug 30;215(1):57-9 - PubMed
  3. Brain Res. 1984 Jul 23;306(1-2):39-52 - PubMed
  4. Brain Res Bull. 1999 Nov-Dec;50(5-6):391-2 - PubMed
  5. Br J Pharmacol. 2013 Apr;168(7):1750-7 - PubMed
  6. Mol Pharmacol. 2005 Sep;68(3):568-78 - PubMed
  7. Nature. 1998 Apr 30;392(6679):933-6 - PubMed
  8. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2811-4 - PubMed
  9. Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):654-9 - PubMed
  10. J Pharmacol Exp Ther. 1988 Mar;244(3):940-4 - PubMed
  11. Pharmacol Res Perspect. 2016 Dec 23;5(1):e00282 - PubMed
  12. J Affect Disord. 2010 Dec;127(1-3):230-40 - PubMed
  13. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5167-72 - PubMed
  14. Int J Dev Neurosci. 2004 Aug-Oct;22(5-6):329-37 - PubMed
  15. J Dev Orig Health Dis. 2015 Jun;6(3):225-41 - PubMed
  16. J Dev Orig Health Dis. 2015 Jun;6(3):182-200 - PubMed
  17. Nat Commun. 2013;4:2720 - PubMed
  18. J Histochem Cytochem. 1989 May;37(5):653-61 - PubMed
  19. Eur J Pharmacol. 1990 Dec 4;191(3):497-9 - PubMed
  20. Neuron. 2003 Feb 20;37(4):577-82 - PubMed
  21. J Physiol. 2012 Aug 15;590(16):3677-89 - PubMed
  22. J Neurosci. 2014 Apr 16;34(16):5575-82 - PubMed
  23. Prog Brain Res. 1993;98:61-71 - PubMed
  24. J Neurosci Methods. 2016 Apr 1;263:23-35 - PubMed
  25. J Comp Neurol. 2006 Feb 20;494(6):863-75 - PubMed
  26. Front Neuroanat. 2016 Jan 22;10:1 - PubMed
  27. Neurotoxicol Teratol. 2011 May-Jun;33(3):431-4 - PubMed
  28. J Neurophysiol. 2013 Nov;110(10):2287-94 - PubMed
  29. J Pharmacol Exp Ther. 1989 Dec;251(3):894-900 - PubMed
  30. Neuroscience. 1986;17(1):167-82 - PubMed
  31. Cold Spring Harb Protoc. 2011 Aug 01;2011(8):985-9 - PubMed
  32. J Neurophysiol. 2004 Jul;92(1):221-35 - PubMed
  33. J Comp Neurol. 1992 Sep 15;323(3):387-410 - PubMed
  34. Psychopharmacology (Berl). 2013 Jun;227(3):493-9 - PubMed
  35. J Neurophysiol. 2013 Sep;110(5):1144-57 - PubMed
  36. Brain Res. 2015 Jul 21;1614:86-93 - PubMed
  37. Trends Biochem Sci. 1999 Jun;24(6):232-6 - PubMed
  38. Brain Res Bull. 1989 Sep;23(3):187-92 - PubMed
  39. Cold Spring Harb Protoc. 2009 Nov;2009(11):pdb.prot5316 - PubMed
  40. Neuropsychopharmacology. 2004 Aug;29(8):1440-50 - PubMed
  41. J Neurosci. 1995 May;15(5 Pt 2):3905-12 - PubMed
  42. Neuroscience. 2013 Sep 17;248:261-77 - PubMed
  43. Neuroscience. 2000;96(4):723-33 - PubMed
  44. Curr Drug Abuse Rev. 2009 Jan;2(1):72-82 - PubMed
  45. Neuroscience. 1987 Mar;20(3):757-71 - PubMed
  46. Psychopharmacology (Berl). 1999 Jan;141(2):145-53 - PubMed
  47. Neuropsychopharmacology. 2012 Jun;37(7):1708-16 - PubMed
  48. Eur J Neurosci. 2009 Jan;29(2):340-58 - PubMed
  49. Ann N Y Acad Sci. 2003 Nov;1003:391-4 - PubMed
  50. Neuropsychopharmacology. 2004 May;29(5):879-90 - PubMed
  51. J Biol Chem. 2004 Aug 20;279(34):35671-8 - PubMed
  52. J Neurosci. 2002 Jan 1;22(1):RC190 - PubMed
  53. Neuroscience. 2002;114(4):817-23 - PubMed
  54. Neuropsychopharmacology. 2008 Oct;33(11):2688-700 - PubMed
  55. Behav Brain Res. 2015;287:82-8 - PubMed
  56. J Neurosci. 2006 Nov 8;26(45):11522-31 - PubMed
  57. Trends Neurosci. 2007 May;30(5):220-7 - PubMed
  58. Science. 1987 Sep 4;237(4819):1219-23 - PubMed
  59. Neuropsychopharmacology. 2005 Jan;30(1):129-44 - PubMed
  60. Neuron. 2016 Apr 20;90(2):333-47 - PubMed
  61. J Neurosci. 1988 Jan;8(1):100-12 - PubMed
  62. Nat Neurosci. 2016 Aug;19(8):1025-33 - PubMed
  63. Science. 1995 Oct 27;270(5236):593-8 - PubMed
  64. J Neurosci. 2014 Mar 26;34(13):4509-18 - PubMed
  65. J Neurosci. 2009 Apr 8;29(14):4664-74 - PubMed
  66. Pharmacol Biochem Behav. 2006 Nov;85(3):669-74 - PubMed
  67. J Neurophysiol. 2000 Jan;83(1):90-8 - PubMed
  68. J Neurosci. 1995 Mar;15(3 Pt 1):1714-23 - PubMed
  69. Trends Neurosci. 1999 Aug;22(8):337-45 - PubMed
  70. Eur J Neurosci. 2000 Oct;12(10):3596-604 - PubMed
  71. Eur J Neurosci. 2013 Oct;38(7):3027-35 - PubMed
  72. Mol Pharmacol. 2004 Jul;66(1):137-43 - PubMed
  73. J Pharmacol Exp Ther. 1976 Dec;199(3):649-61 - PubMed
  74. Life Sci. 1991;49(9):665-70 - PubMed
  75. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1859-63 - PubMed
  76. Br J Pharmacol. 2008 Mar;153 Suppl 1:S438-45 - PubMed
  77. Brain Res Bull. 1990 Aug;25(2):271-84 - PubMed
  78. Eur J Neurosci. 2015 May;41(9):1126-38 - PubMed
  79. Exp Brain Res. 2006 Oct;174(4):660-6 - PubMed
  80. Nature. 1998 Apr 30;392(6679):936-41 - PubMed
  81. ACS Chem Neurosci. 2013 Dec 18;4(12):1524-9 - PubMed
  82. ISRN Neurosci. 2013 Jun 23;2013:604847 - PubMed
  83. Neuropsychopharmacology. 2006 Nov;31(11):2462-75 - PubMed
  84. Nature. 2001 May 31;411(6837):583-7 - PubMed
  85. J Comp Neurol. 2005 Mar 7;483(2):217-35 - PubMed
  86. Eur J Neurosci. 2009 Oct;30(7):1358-69 - PubMed
  87. Respir Physiol Neurobiol. 2004 Nov 15;143(2-3):251-62 - PubMed
  88. Neuropsychopharmacology. 2007 May;32(5):1082-97 - PubMed
  89. J Pain. 2013 Jun;14(6):638-47 - PubMed
  90. Neuropsychopharmacology. 2004 Dec;29(12):2115-25 - PubMed
  91. Nature. 2012 Nov 8;491(7423):212-7 - PubMed
  92. Neuropharmacology. 2014 Apr;79:573-9 - PubMed
  93. J Pharmacol Exp Ther. 2004 Dec;311(3):1044-51 - PubMed
  94. J Neurosci. 2014 Mar 26;34(13):4708-27 - PubMed

Publication Types