Display options
Share it on

Nat Commun. 2017 Jun 01;8:15516. doi: 10.1038/ncomms15516.

Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons.

Nature communications

Filippo Cardano, Alessio D'Errico, Alexandre Dauphin, Maria Maffei, Bruno Piccirillo, Corrado de Lisio, Giulio De Filippis, Vittorio Cataudella, Enrico Santamato, Lorenzo Marrucci, Maciej Lewenstein, Pietro Massignan

Affiliations

  1. Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, Napoli 80126, Italy.
  2. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, Castelldefels 08860, Spain.
  3. CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Via Cintia, Napoli 80126, Italy.
  4. CNR-ISASI, Institute of Applied Science and Intelligent Systems, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
  5. ICREA-Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, Barcelona E-08010, Spain.

PMID: 28569741 PMCID: PMC5501976 DOI: 10.1038/ncomms15516

Abstract

Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.

References

  1. Nature. 2013 Apr 11;496(7444):196-200 - PubMed
  2. Nat Commun. 2017 Jan 04;8:13756 - PubMed
  3. Phys Rev Lett. 2006 Apr 28;96(16):163905 - PubMed
  4. Nat Commun. 2012 Jun 06;3:882 - PubMed
  5. Rep Prog Phys. 2016 Feb;79(2):026001 - PubMed
  6. Nat Commun. 2016 Oct 21;7:13112 - PubMed
  7. Phys Rev Lett. 1989 Jun 5;62(23):2747-2750 - PubMed
  8. Science. 2015 Sep 25;349(6255):1510-3 - PubMed
  9. Science. 2015 Sep 25;349(6255):1514-8 - PubMed
  10. Nat Commun. 2017 Jan 04;8:13918 - PubMed
  11. Phys Rev Lett. 2015 Jul 24;115(4):040402 - PubMed
  12. Nat Commun. 2016 Dec 23;7:13986 - PubMed
  13. Sci Adv. 2015 Mar 13;1(2):e1500087 - PubMed
  14. Nat Commun. 2016 Apr 22;7:11439 - PubMed
  15. Phys Rev Lett. 2009 Feb 13;102(6):065703 - PubMed
  16. Nat Commun. 2016 Nov 11;7:13368 - PubMed
  17. Nat Commun. 2016 Jun 17;7:11744 - PubMed

Publication Types