Display options
Share it on

AMB Express. 2017 Dec;7(1):124. doi: 10.1186/s13568-017-0424-z. Epub 2017 Jun 17.

H.

AMB Express

Aurin M Vos, Edita Jurak, Jordi F Pelkmans, Koen Herman, Gill Pels, Johan J Baars, Ed Hendrix, Mirjam A Kabel, Luis G Lugones, Han A B Wösten

Affiliations

  1. Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
  2. Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
  3. Plant Breeding, Wageningen University and Research Centre, 6700 AJ, Wageningen, The Netherlands.
  4. Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. [email protected].

PMID: 28629207 PMCID: PMC5474230 DOI: 10.1186/s13568-017-0424-z

Abstract

Degradation of lignin by fungi enhances availability of cellulose and hemicellulose in plant waste and thereby increases the amount of carbon source available to these microorganisms. The button mushroom Agaricus bisporus degrades only about half of the lignin in compost and about 40% of the carbohydrates remain unutilized during mushroom cultivation. Here it was assessed whether over-expression of the manganese peroxidase gene mnp1 improves lignin degradation and, as a consequence, carbohydrate breakdown by A. bisporus. Transformants expressing mnp1 under the control of actin regulatory sequences produced MnP activity in malt extract medium, while the parental strain A15 did not. MnP activity was increased 0.3- and 3-fold at casing and after the 2nd flush of a semi-commercial cultivation, respectively, when compared to strain A15. Pyrolysis-GC-MS showed that overexpression of MnP decreased phenylmethane and phenylethane type lignin relative to the phenylpropane type after the 2nd flush. However, it neither affected the syringyl/guaiacyl derived residue ratio nor the ratio of oxidized to non-oxidized lignin residues. Moreover, the carbohydrate content and accessibility was not affected in compost. Notably, the capacity of compost extract to consume the MnP co-factor H

Keywords: Agaricus bisporus; Compost; Fungus; Hydrogen peroxide; Lignin; Manganese peroxidase

References

  1. Analyst. 1982 Mar;107(1272):307-18 - PubMed
  2. Appl Environ Microbiol. 1994 Mar;60(3):960-5 - PubMed
  3. Appl Microbiol Biotechnol. 2001 Mar;55(2):170-6 - PubMed
  4. FEBS Lett. 1997 Apr 21;407(1):89-92 - PubMed
  5. Appl Environ Microbiol. 1994 Sep;60(9):3049-54 - PubMed
  6. Appl Microbiol Biotechnol. 2017 Jun;101(11):4363-4369 - PubMed
  7. Chem Rev. 2001 Nov;101(11):3397-413 - PubMed
  8. Appl Environ Microbiol. 1994 May;60(5):1538-46 - PubMed
  9. Annu Rev Plant Biol. 2003;54:519-46 - PubMed
  10. PLoS One. 2012;7(12):e52446 - PubMed
  11. Int Microbiol. 2005 Sep;8(3):195-204 - PubMed
  12. PLoS One. 2015 Oct 05;10(10):e0138909 - PubMed
  13. Appl Microbiol Biotechnol. 2016 Aug;100(16):7151-9 - PubMed
  14. AMB Express. 2017 Dec;7(1):12 - PubMed
  15. Anal Biochem. 1994 May 1;218(2):399-404 - PubMed
  16. Bioresour Technol. 2006 May;97(8):1012-7 - PubMed
  17. Environ Microbiol. 2015 Aug;17(8):3098-109 - PubMed
  18. Appl Environ Microbiol. 2000 Oct;66(10 ):4510-3 - PubMed
  19. Annu Rev Microbiol. 1987;41:465-505 - PubMed
  20. FEBS Lett. 1996 Aug 5;391(1-2):144-8 - PubMed
  21. J Agric Food Chem. 2001 Jun;49(6):2709-16 - PubMed
  22. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12932-7 - PubMed
  23. Enzyme Microb Technol. 2001 Mar 8;28(4-5):301-307 - PubMed
  24. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17501-6 - PubMed
  25. J Agric Food Chem. 2003 Apr 9;51(8):2242-5 - PubMed
  26. Plant Physiol. 2010 Jul;153(3):895-905 - PubMed

Publication Types