Display options
Share it on

Nat Chem. 2017 Jun;9(6):531-536. doi: 10.1038/nchem.2753. Epub 2017 Apr 03.

Monitoring interconversion between stereochemical states in single chirality-transfer complexes on a platinum surface.

Nature chemistry

Guillaume Goubert, Yi Dong, Michael N Groves, J-C Lemay, Bjørk Hammer, Peter H McBreen

Affiliations

  1. Department of Chemistry, Laval University, Quebec City, Quebec, G1V 0A6, Canada.
  2. iNano and Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
  3. Department of Chemistry and Biochemistry, California State University, Fullerton, California 92834, USA.

PMID: 28537600 DOI: 10.1038/nchem.2753

Abstract

Elementary steps in enantioselective heterogeneous catalysis take place on the catalyst surface and the targeted synthesis of a desired enantiomer requires the implantation of chiral information at the surface, which can be achieved-for example-by adsorbing chiral molecules. Studies of the structures of complexes formed between adsorbed prochiral reagents and chiral molecules yield information on the forces exerting stereocontrol, but further insight could be gained by studying the dynamics of their interactions. Here, using time-lapsed scanning tunnelling microscopy and density functional theory, we observe coupling between multiple stereochemical states within individual non-covalently bonded chirality-transfer complexes on a metal surface. We identify two modes of transformation between stereochemical states and find that the prochiral reagent can sample several complexation geometries during the lifetime of a complex, switching between states of opposing prochirality in the process. These results provide insight on the contribution of individual stereochemical states to the overall enantioselectivity of reactions occurring on catalyst surfaces.

References

  1. Proc Natl Acad Sci U S A. 2016 May 10;113(19):5159-66 - PubMed
  2. Chem Commun (Camb). 2016 Dec 21;52(98 ):14075-14084 - PubMed
  3. Nat Chem. 2015 Jun;7(6):520-5 - PubMed
  4. Nat Commun. 2015 Oct 09;6:8550 - PubMed
  5. J Am Chem Soc. 2013 Jul 10;135(27):9999-10002 - PubMed
  6. Chem Soc Rev. 2015 Nov 7;44(21):7449-64 - PubMed
  7. Science. 2012 Mar 9;335(6073):1209-12 - PubMed
  8. Langmuir. 2011 Aug 16;27(16):9687-95 - PubMed
  9. Chemphyschem. 2016 Apr 4;17(7):971-5 - PubMed
  10. Chimia (Aarau). 2015;69(7-8):393-406 - PubMed
  11. Nat Chem. 2016 Jul;8(7):711-7 - PubMed
  12. Acc Chem Res. 2016 Jun 21;49(6):1182-90 - PubMed
  13. Acc Chem Res. 2000 Oct;33(10):715-27 - PubMed
  14. Angew Chem Int Ed Engl. 2016 May 17;55(21):6112-3 - PubMed
  15. Angew Chem Int Ed Engl. 2014 Aug 11;53(33):8640-4 - PubMed
  16. Chemistry. 2014 Jan 27;20(5):1298-309 - PubMed
  17. J Phys Condens Matter. 2010 Jun 30;22(25):253202 - PubMed
  18. Science. 2011 Nov 11;334(6057):776-80 - PubMed
  19. J Am Chem Soc. 2009 Sep 2;131(34):12358-67 - PubMed
  20. J Chem Phys. 2016 Sep 7;145(9):094107 - PubMed
  21. J Phys Condens Matter. 2010 Jan 20;22(2):022201 - PubMed
  22. Acc Chem Res. 2009 Aug 18;42(8):1152-60 - PubMed
  23. Phys Chem Chem Phys. 2015 Sep 21;17(35):22726-35 - PubMed
  24. J Am Chem Soc. 2015 May 27;137(20):6616-23 - PubMed
  25. Nat Commun. 2016 Aug 04;7:12380 - PubMed

Publication Types