Display options
Share it on

Chem Sci. 2016 Apr 21;7(4):2621-2632. doi: 10.1039/c6sc00046k. Epub 2016 Mar 03.

Whipped oil stabilised by surfactant crystals.

Chemical science

Bernard P Binks, Emma J Garvey, Josélio Vieira

Affiliations

  1. Department of Chemistry , University of Hull , Hull , HU6 7RX , UK . Email: [email protected].
  2. Nestlé Product Technology Centre , PO Box 204, Haxby Road , York , YO91 1XY , UK.

PMID: 28660034 PMCID: PMC5477051 DOI: 10.1039/c6sc00046k

Abstract

We describe a protocol for preparing very stable air-in-oil foams starting with a one-phase oil solution of a fatty acid (myristic acid) in high oleic sunflower oil at high temperature. Upon cooling below the solubility limit, a two-phase mixture consisting of fatty acid crystals (length around 50 μm) dispersed in an oil solution at its solubility is formed which, after whipping, coat air bubbles in the foam. Foams which do not drain, coalesce or coarsen may be produced either by increasing the fatty acid concentration at fixed temperature or aerating the mixtures at different temperatures at constant concentration. We prove that molecular fatty acid is not surface-active as no foam is possible in the one-phase region. Once the two-phase region is reached, fatty acid crystals are shown to be surface-active enabling foam formation, and excess crystals serve to gel the continuous oil phase enhancing foam stability. A combination of rheology, X-ray diffraction and pulsed nuclear magnetic resonance is used to characterise the crystals and oil gels formed before aeration. The crystal-stabilised foams are temperature-sensitive, being rendered completely unstable on heating around the melting temperature of the crystals. The findings are extended to a range of vegetable oil foams stabilised by a combination of adsorbed crystals and gelling of the oil phase, which destabilise at different temperatures depending on the composition and type of fatty acid chains in the triglyceride molecules.

References

  1. Langmuir. 2006 Sep 26;22(20):8337-45 - PubMed
  2. Nature. 2005 Dec 15;438(7070):930 - PubMed
  3. Adv Food Nutr Res. 2002;44:33-145 - PubMed
  4. Angew Chem Int Ed Engl. 2005 Jun 13;44(24):3722-5 - PubMed
  5. J Food Sci. 2007 Apr;72 (3):E138-42 - PubMed
  6. ACS Appl Mater Interfaces. 2015 Jul 8;7(26):14328-37 - PubMed
  7. Phys Chem Chem Phys. 2010 Aug 28;12(32):9169-71 - PubMed
  8. Chem Rev. 1997 Dec 18;97(8):3133-3160 - PubMed
  9. J Colloid Interface Sci. 2008 Dec 1;328(1):172-9 - PubMed
  10. J Colloid Interface Sci. 2009 Jul 1;335(1):94-104 - PubMed
  11. Soft Matter. 2014 Jan 28;10(4):578-89 - PubMed

Publication Types