Display options
Share it on

Proteome Sci. 2017 May 30;15:10. doi: 10.1186/s12953-017-0118-0. eCollection 2016.

The effect of microbial challenge on the intestinal proteome of broiler chickens.

Proteome science

Emily L O'Reilly, Richard J Burchmore, Nicholas H Sparks, P David Eckersall

Affiliations

  1. Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK.
  2. Glasgow Polyomics Facility, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK.
  3. The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, Midlothian, EH25 9RG UK.

PMID: 28572745 PMCID: PMC5450085 DOI: 10.1186/s12953-017-0118-0

Abstract

BACKGROUND: In poultry production intestinal health and function is paramount to achieving efficient feed utilisation and growth. Uncovering the localised molecular mechanisms that occur during the early and important periods of growth that allow birds to grow optimally is important for this species. The exposure of young chicks to used litter from older flocks, containing mixed microbial populations, is a widely utilised model in poultry research. It rarely causes mortality but effects an immunogenic stimulation sufficient enough to cause reduced and uneven growth that is reflective of a challenging growing environment.

METHODS: A mixed microbial challenge was delivered as used litter containing

RESULTS: The abundance of cytoskeletal proteins of the chicken small intestinal proteome, particularly actin and actin associated proteins, increased over time in both challenged and control birds. Villin-1, an actin associated anti-apoptotic protein, was reduced in abundance in the challenged birds indicating that many of the changes in cytoskeletal protein abundance in the challenged birds were as a result of an increased rate of apoptosis. A number of heat shock proteins decreased in abundance over time in the intestine and this was more pronounced in the challenged birds.

CONCLUSIONS: The small intestinal proteome sampled from 12 to 22 days of age showed considerable developmental change, comparable to other species indicating that many of the changes in protein abundance in the small intestine are conserved among vertebrates. Identifying and distinguishing the changes in proteins abundance and molecular pathways that occur as a result of normal growth from those that occur as a result of a challenging microbial environment is important in this major food producing animal.

Keywords: Apoptosis; Chicken; Intestine; Proteome; Villin

References

  1. J Proteomics. 2012 Feb 16;75(5):1463-71 - PubMed
  2. MBio. 2014 Jul 01;5(4):e01364-14 - PubMed
  3. Poult Sci. 1998 Jan;77(1):75-82 - PubMed
  4. J Biol Chem. 2008 Apr 4;283(14):9454-64 - PubMed
  5. ISME J. 2016 May;10 (5):1170-81 - PubMed
  6. Poult Sci. 2012 Apr;91(4):790-9 - PubMed
  7. Infect Immun. 2005 May;73(5):3184-7 - PubMed
  8. Am J Physiol Gastrointest Liver Physiol. 2004 Apr;286(4):G645-52 - PubMed
  9. Front Chem. 2017 Jan 26;5:4 - PubMed
  10. J Proteomics. 2013 Oct 8;91:226-41 - PubMed
  11. Appl Environ Microbiol. 2010 Oct;76(19):6572-82 - PubMed
  12. Poult Sci. 2012 Apr;91(4):781-9 - PubMed
  13. Avian Dis. 2011 Dec;55(4):539-44 - PubMed
  14. PLoS One. 2011 Jan 31;6(1):e14636 - PubMed
  15. Sci Rep. 2016 Oct 21;6:35491 - PubMed
  16. Cancer Res. 1990 Jan 15;50(2):438-43 - PubMed
  17. Poult Sci. 2004 Oct;83(10):1667-74 - PubMed
  18. Trends Biochem Sci. 2006 Aug;31(8):455-64 - PubMed
  19. Poult Sci. 2009 Dec;88(12):2474-81 - PubMed
  20. Cell Death Differ. 2012 Sep;19(9):1514-24 - PubMed
  21. Proteomics. 2004 Jul;4(7):2082-93 - PubMed
  22. Mol Cell Proteomics. 2013 Nov;12(11):3310-8 - PubMed
  23. J Proteome Res. 2007 Jul;6(7):2596-604 - PubMed
  24. Matrix Biol. 2011 Apr;30(3):195-206 - PubMed
  25. J Clin Immunol. 2005 Nov;25(6):582-91 - PubMed
  26. J Proteome Res. 2010 Sep 3;9(9):4628-39 - PubMed
  27. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4596-601 - PubMed
  28. J Sci Food Agric. 2013 Jan;93(2):284-92 - PubMed
  29. J Biol Chem. 1998 Apr 24;273(17):10543-9 - PubMed
  30. Avian Pathol. 1993 Mar;22(1):3-31 - PubMed
  31. J Proteome Res. 2007 Sep;6(9):3691-704 - PubMed
  32. Poult Sci. 1999 Apr;78(4):529-35 - PubMed
  33. Science. 2001 Feb 2;291(5505):881-4 - PubMed
  34. Proteome Sci. 2015 Feb 21;13:9 - PubMed
  35. J Proteomics. 2012 Apr 3;75(7):2015-26 - PubMed
  36. Nat Commun. 2016 Nov 23;7:13419 - PubMed
  37. Br Poult Sci. 2001 Sep;42(4):505-13 - PubMed
  38. Dig Dis Sci. 1995 Feb;40(2):389-95 - PubMed
  39. Int J Hyperthermia. 2009 Dec;25(8):634-40 - PubMed

Publication Types