Display options
Share it on

World J Virol. 2017 May 12;6(2):26-35. doi: 10.5501/wjv.v6.i2.26.

Structural and nucleic acid binding properties of hepatitis delta virus small antigen.

World journal of virology

Carolina Alves, Hong Cheng, João Paulo Tavanez, Ana Casaca, Severin Gudima, Heinrich Roder, Celso Cunha

Affiliations

  1. Carolina Alves, João Paulo Tavanez, Ana Casaca, Celso Cunha, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal.

PMID: 28573087 PMCID: PMC5437381 DOI: 10.5501/wjv.v6.i2.26

Abstract

AIM: To further characterize the structure and nucleic acid binding properties of the 195 amino acid small delta antigen, S-HDAg, a study was made of a truncated form of S-HDAg, comprising amino acids 61-195 (∆60HDAg), thus lacking the domain considered necessary for dimerization and higher order multimerization.

METHODS: Circular dichroism, and nuclear magnetic resonance experiments were used to assess the structure of ∆60HDAg. Nucleic acid binding properties were investigated by gel retardation assays.

RESULTS: Results showed that the truncated ∆60HDAg protein is intrinsically disordered but compact, whereas the RNA binding domain, comprising residues 94-146, adopts a dynamic helical conformation. We also found that ∆60HDAg fails to multimerize but still contains nucleic acid binding activity, indicating that multimerization is not essential for nucleic acid binding. Moreover, in agreement with what has been previously reported for full-length protein, no apparent specificity was found for the truncated protein regarding nucleic acid binding.

CONCLUSION: Taken together these results allowed concluding that ∆60HDAg is intrinsically disordered but compact; ∆60HDAg is not a multimer but is still capable of nucleic acid binding albeit without apparent specificity.

Keywords: Circular dichroism; Delta antigen; Hepatitis delta virus; Intrinsically disordered protein; Nuclear magnetic resonance

Conflict of interest statement

Conflict-of-interest statement: The authors declare no conflicts of interest.

References

  1. Virology. 2010 Nov 25;407(2):333-40 - PubMed
  2. J Virol. 1988 Jun;62(6):1855-61 - PubMed
  3. J Virol. 2014 Jul;88(13):7402-11 - PubMed
  4. J Virol. 1999 Dec;73(12):10540-5 - PubMed
  5. Viruses. 2010 Jan;2(1):189-212 - PubMed
  6. Prog Clin Biol Res. 1987;234:97-103 - PubMed
  7. J Virol. 2004 Dec;78(23):13325-34 - PubMed
  8. Biochemistry. 1999 Dec 14;38(50):16424-31 - PubMed
  9. J Virol. 2009 May;83(9):4548-56 - PubMed
  10. J Virol. 2008 Oct;82(19):9409-16 - PubMed
  11. J Virol. 1994 May;68(5):2879-88 - PubMed
  12. J Virol. 1991 Aug;65(8):4057-62 - PubMed
  13. Prog Clin Biol Res. 1987;234:105-10 - PubMed
  14. Virology. 2004 Feb 5;319(1):60-70 - PubMed
  15. Annu Rev Biophys Biophys Chem. 1988;17:145-66 - PubMed
  16. J Hepatol. 2009 May;50(5):1043-50 - PubMed
  17. J Virol. 2008 Oct;82(19):9345-58 - PubMed
  18. J Virol. 1988 Jul;62(7):2403-10 - PubMed
  19. Int J Biochem Cell Biol. 2011 Aug;43(8):1090-103 - PubMed
  20. J Virol. 1998 Jun;72(6):4783-8 - PubMed
  21. Proteins. 2003;53 Suppl 6:566-72 - PubMed
  22. Structure. 1998 Jul 15;6(7):821-30 - PubMed
  23. Virol J. 2011 Jul 20;8:358 - PubMed
  24. J Magn Reson B. 1994 Jul;104(3):298-302 - PubMed
  25. RNA. 2009 Nov;15(11):1971-9 - PubMed

Publication Types

Grant support