Display options
Share it on

Biol Open. 2017 Jul 15;6(7):1041-1055. doi: 10.1242/bio.025999.

Developmental downregulation of LIS1 expression limits axonal extension and allows axon pruning.

Biology open

Kanako Kumamoto, Tokuichi Iguchi, Ryuichi Ishida, Takuya Uemura, Makoto Sato, Shinji Hirotsune

Affiliations

  1. Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan.
  2. Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
  3. Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan.
  4. Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan.
  5. United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan.
  6. Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan [email protected].

PMID: 28630356 PMCID: PMC5550919 DOI: 10.1242/bio.025999

Abstract

The robust axonal growth and regenerative capacities of young neurons decrease substantially with age. This developmental downregulation of axonal growth may facilitate axonal pruning and neural circuit formation but limits functional recovery following nerve damage. While external factors influencing axonal growth have been extensively investigated, relatively little is known about the intrinsic molecular changes underlying the age-dependent reduction in regeneration capacity. We report that developmental downregulation of LIS1 is responsible for the decreased axonal extension capacity of mature dorsal root ganglion (DRG) neurons. In contrast, exogenous LIS1 expression or endogenous LIS1 augmentation by calpain inhibition restored axonal extension capacity in mature DRG neurons and facilitated regeneration of the damaged sciatic nerve. The insulator protein CTCF suppressed LIS1 expression in mature DRG neurons, and this reduction resulted in excessive accumulation of phosphoactivated GSK-3β at the axon tip, causing failure of the axonal extension. Conversely, sustained LIS1 expression inhibited developmental axon pruning in the mammillary body. Thus, LIS1 regulation may coordinate the balance between axonal growth and pruning during maturation of neuronal circuits.

© 2017. Published by The Company of Biologists Ltd.

Keywords: Axonal extension; Axonal transport; LIS1; Nerve degeneration; Nerve regeneration; Pruning

Conflict of interest statement

Competing interestsThe authors declare no competing or financial interests.

References

  1. Cell. 2010 Oct 1;143(1):145-55 - PubMed
  2. Cell Rep. 2012 Aug 30;2(2):345-57 - PubMed
  3. Neurol Clin. 1989 Feb;7(1):89-105 - PubMed
  4. Nat Med. 2009 Oct;15(10):1202-7 - PubMed
  5. Nature. 1993 Aug 19;364(6439):717-21 - PubMed
  6. J Neurocytol. 1994 Jan;23(1):1-28 - PubMed
  7. J Neurosci. 1989 Nov;9(11):3776-95 - PubMed
  8. Neurochem Res. 1987 Jan;12(1):61-5 - PubMed
  9. Microsurgery. 1998;18(2):119-24 - PubMed
  10. Med Hypotheses. 2011 Jul;77(1):106-8 - PubMed
  11. Science. 1997 Jan 31;275(5300):661-5 - PubMed
  12. J Tissue Eng. 2011;2(1):2041731411418392 - PubMed
  13. Nature. 2003 Oct 30;425(6961):917-25 - PubMed
  14. Sci Rep. 2013;3:1224 - PubMed
  15. J Neurosci. 1987 Oct;7(10):3350-61 - PubMed
  16. Annu Rev Neurosci. 2005;28:127-56 - PubMed
  17. JAMA. 1993 Dec 15;270(23):2838-42 - PubMed
  18. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6429-34 - PubMed
  19. Gerontology. 1994;40 Suppl 2:36-45 - PubMed
  20. Nat Rev Neurosci. 2014 Jun;15(6):394-409 - PubMed
  21. Neuron. 2013 Dec 4;80(5):1175-89 - PubMed
  22. J Cell Sci. 2005 Mar 1;118(Pt 5):993-1005 - PubMed
  23. Neuron. 2003 Jun 19;38(6):871-85 - PubMed
  24. EMBO J. 2008 Oct 8;27(19):2471-83 - PubMed
  25. Clin Genet. 2007 Oct;72(4):296-304 - PubMed
  26. Neuroscience. 2001;103(4):865-72 - PubMed
  27. PLoS One. 2013 Nov 25;8(11):e82546 - PubMed
  28. EMBO J. 1993 Feb;12(2):803-8 - PubMed
  29. Exp Neurol. 2007 Sep;207(1):64-74 - PubMed
  30. Cell Tissue Res. 2012 Jul;349(1):5-14 - PubMed
  31. Genesis. 2006 Dec;44(12):611-21 - PubMed
  32. Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a001859 - PubMed
  33. Genes Dev. 2006 Jun 1;20(11):1384-93 - PubMed
  34. Biol Psychiatry. 2011 Jun 15;69(12):1168-77 - PubMed
  35. J Neurosci. 1989 Feb;9(2):436-46 - PubMed
  36. J Neurosci. 1988 Jul;8(7):2394-405 - PubMed
  37. Nat Rev Neurosci. 2010 Aug;11(8):539-51 - PubMed
  38. Nat Rev Mol Cell Biol. 2009 Dec;10 (12 ):854-65 - PubMed
  39. Comput Biomed Res. 1984 Apr;17(2):185-92 - PubMed
  40. Nucleic Acids Res. 1997 Feb 1;25(3):466-74 - PubMed
  41. Brain Res. 1992 Feb 28;573(2):267-75 - PubMed
  42. Cell. 2005 Jan 14;120(1):123-35 - PubMed
  43. Ageing Res Rev. 2011 Jan;10(1):43-53 - PubMed
  44. Nat Genet. 1998 Aug;19(4):333-9 - PubMed
  45. Neuron. 1995 Jan;14(1):125-32 - PubMed
  46. EMBO J. 2010 Feb 3;29(3):517-31 - PubMed
  47. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16021-6 - PubMed
  48. J Cell Biol. 2012 Jan 9;196(1):7-18 - PubMed
  49. Nutr Health. 2011;20(3-4):171-82 - PubMed
  50. Cold Spring Harb Perspect Biol. 2010 Nov;2(11):a001768 - PubMed
  51. Nat Rev Genet. 2014 Apr;15(4):234-46 - PubMed
  52. J Vis Exp. 2007;(10):562 - PubMed
  53. Biochem Biophys Res Commun. 1987 Jul 31;146(2):797-801 - PubMed

Publication Types