Display options
Share it on

Can J Chem. 2016 Nov;94(11):927-935. doi: 10.1139/cjc-2015-0606. Epub 2016 Feb 09.

Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans.

Canadian journal of chemistry

Arunima Singh, Matthew B Tessier, Kari Pederson, Xiaocong Wang, Andre P Venot, Geert-Jan Boons, James H Prestegard, Robert J Woods

Affiliations

  1. Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.

PMID: 28603292 PMCID: PMC5464424 DOI: 10.1139/cjc-2015-0606

Abstract

Glycosaminoglycans (GAGs) are an important class of carbohydrates that serve critical roles in blood clotting, tissue repair, cell migration and adhesion, and lubrication. The variable sulfation pattern and iduronate ring conformations in GAGs influence their polymeric structure and nature of interaction. This study characterizes several heparin-like GAG disaccharides and tetrasaccharides using NMR and molecular dynamics simulations to assist in the development of parameters for GAGs within the GLYCAM06 force field. The force field additions include parameters and charges for a transferable sulfate group for O- and N-sulfation, neutral (COOH) forms of iduronic and glucuronic acid, and Δ4,5-unsaturated uronate (ΔUA) residues. ΔUA residues frequently arise from the enzymatic digestion of heparin and heparin sulfate. Simulations of disaccharides containing ΔUA reveal that the presence of sulfation on this residue alters the relative populations of

Keywords: GLYCAM; création d’un champ de force; force field development; glycosaminoglycanes; glycosaminoglycans; heparin; héparine

References

  1. J Biol Chem. 2015 Jun 19;290(25):15421-36 - PubMed
  2. Proteins. 2010 Jun;78(8):1950-8 - PubMed
  3. Carbohydr Res. 1990 Jan 15;195(2):157-67 - PubMed
  4. Nat Chem Biol. 2006 Sep;2(9):467-73 - PubMed
  5. J Cell Biol. 2006 Jul 31;174(3):323-7 - PubMed
  6. Glycobiology. 2009 Nov;19(11):1185-96 - PubMed
  7. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 - PubMed
  8. Methods Mol Biol. 2004;278:313-52 - PubMed
  9. J Biomol NMR. 1995 Nov;6(3):277-93 - PubMed
  10. Carbohydr Res. 1995 Mar 17;268(2):159-75 - PubMed
  11. Annu Rev Biochem. 1991;60:443-75 - PubMed
  12. Mol Microbiol. 2001 Feb;39(3):708-13 - PubMed
  13. Biochem J. 1993 Aug 1;293 ( Pt 3):849-58 - PubMed
  14. Biomacromolecules. 2013 Apr 8;14(4):1149-59 - PubMed
  15. Annu Rev Biochem. 1999;68:729-77 - PubMed
  16. J Comput Chem. 2008 Mar;29(4):622-55 - PubMed
  17. Drug Discov Today. 2010 Aug;15(15-16):596-609 - PubMed
  18. J Chem Theory Comput. 2012 May 8;8(5):1542-1555 - PubMed
  19. Carbohydr Res. 2010 Mar 30;345(5):689-95 - PubMed
  20. Biochem J. 1997 Nov 15;328 ( Pt 1):51-61 - PubMed
  21. Biochemistry. 2007 Feb 6;46(5):1167-75 - PubMed
  22. J Phys Chem B. 2012 Jun 7;116(22):6380-6 - PubMed
  23. J Comput Chem. 2001 Aug;22(11):1125-37 - PubMed
  24. Carbohydr Res. 1998 Jun;309(2):135-44 - PubMed
  25. J Phys Chem A. 2008 Mar 27;112(12):2634-9 - PubMed
  26. Mol Simul. 2008;34(4):349-363 - PubMed
  27. Carbohydr Res. 2010 Jan 26;345(2):291-302 - PubMed
  28. Acta Crystallogr B. 2002 Jun;58(Pt 3 Pt 1):380-8 - PubMed
  29. Org Biomol Chem. 2003 Jul 7;1(13):2253-66 - PubMed
  30. Carbohydr Res. 1998 Jan;306(1-2):35-43 - PubMed
  31. J Chem Theory Comput. 2012 Feb 14;8(2):759-776 - PubMed
  32. Chem Biol. 2005 Mar;12(3):267-77 - PubMed
  33. Carbohydr Res. 1994 Mar 4;255:1-26 - PubMed
  34. Infect Immun. 1997 Jan;65(1):1-8 - PubMed
  35. Curr Opin Struct Biol. 2004 Jun;14(3):360-7 - PubMed
  36. Proteins. 2004 May 1;55(2):383-94 - PubMed

Publication Types

Grant support