Display options
Share it on

3 Biotech. 2017 Jul;7(3):204. doi: 10.1007/s13205-017-0837-z. Epub 2017 Jun 30.

qPCR and HRM-based diagnosis of SNPs on growth differentiation factor 9 (GDF9), a gene associated with sheep (Ovis aries) prolificacy.

3 Biotech

Raquel Anahí Escobar-Chaparro, Gabriel Guillén, Luis Uribe Espejo-Galicia, Víctor Manuel Meza-Villalvazo, Julián Mario Peña-Castro, José Abad-Zavaleta

Affiliations

  1. División de Estudios de Posgrado, Universidad del Papaloapan, Tuxtepec, Oaxaca, Mexico.
  2. Instituto de Biotecnología, Universidad del Papaloapan, Circuito Central No. 200, Parque Industrial, C.P. 68301, Tuxtepec, Oaxaca, Mexico.
  3. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
  4. Instituto de Biotecnología, Universidad del Papaloapan, Circuito Central No. 200, Parque Industrial, C.P. 68301, Tuxtepec, Oaxaca, Mexico. [email protected].

PMID: 28667646 PMCID: PMC5493575 DOI: 10.1007/s13205-017-0837-z

Abstract

Prolificacy is a desirable trait for genetic improvement of sheep flocks, since it holds the potential to improve productivity. Animals carrying single-nucleotide polymorphisms (SNPs) in genes associated with this trait can be identified and employed to increase prolificacy in flocks. In this study, we report a diagnostic method based on quantitative PCR and high-resolution melting curves to detect different SNPs in the prolificacy-associated gene growth differentiation factor 9 (GDF9). The diagnostic method was validated using artificial sequences representing known SNPs in GDF9, then applied to a real flock comprising four breeds and admixed animals (n = 306). Five different SNPs were identified in this flock, as was a low or null frequency of occurrence of SNPs positively associated with prolificacy. This indicates a need to implement a breeding strategy for recovering or reintroducing such SNPs. Our method provides a genotyping strategy for identifying individuals with SNPs of interest for prolificacy, which will help producers plan a breeding strategy for this trait. This method can be adapted and expanded for the diagnosis of other traits of interest.

Keywords: Animal breeding; Fertility; Genomic DNA; Genotyping

References

  1. Pharmacogenomics. 2007 Jun;8(6):597-608 - PubMed
  2. Trop Anim Health Prod. 2010 Jun;42(5):985-93 - PubMed
  3. Mol Biol Rep. 2011 Nov;38(8):5199-204 - PubMed
  4. Reprod Domest Anim. 2010 Aug;45(4):666-9 - PubMed
  5. Theriogenology. 2007 Sep 1;68 Suppl 1:S266-73 - PubMed
  6. Genetika. 2008 Apr;44(4):570-3 - PubMed
  7. Biol Reprod. 2004 Apr;70(4):900-9 - PubMed
  8. Pol J Vet Sci. 2016;19(2):281-9 - PubMed
  9. Genet Sel Evol. 2005;37 Suppl 1:S11-23 - PubMed
  10. Nat Protoc. 2008;3(6):1101-8 - PubMed
  11. Hum Mutat. 2009 Jun;30(6):860-6 - PubMed
  12. PLoS One. 2013;8(1):e53172 - PubMed
  13. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W43-6 - PubMed
  14. Reprod Domest Anim. 2016 Oct;51(5):631-7 - PubMed
  15. Anim Genet. 2015 Feb;46(1):98-9 - PubMed
  16. Gene. 2013 Jul 25;524(2):296-303 - PubMed
  17. Genetika. 2010 Apr;46(4):572-6 - PubMed
  18. Genetika. 2016 Apr;52(4):461-5 - PubMed
  19. Reproduction. 2004 Oct;128(4):379-86 - PubMed
  20. Trends Plant Sci. 2016 Jun;21(6):528-37 - PubMed
  21. Genetika. 2010 Apr;46(4):517-25 - PubMed
  22. J Clin Endocrinol Metab. 2006 Nov;91(11):4713-6 - PubMed
  23. Genetika. 2009 Feb;45(2):224-9 - PubMed
  24. PLoS One. 2014 Apr 21;9(4):e95251 - PubMed

Publication Types