Display options
Share it on

Front Hum Neurosci. 2017 Jun 07;11:298. doi: 10.3389/fnhum.2017.00298. eCollection 2017.

Switching Adaptability in Human-Inspired Sidesteps: A Minimal Model.

Frontiers in human neuroscience

Keisuke Fujii, Yuki Yoshihara, Hiroko Tanabe, Yuji Yamamoto

Affiliations

  1. Structured Learning Team, Center for Advanced Intelligence Project, Institute of Physical and Chemical Research (RIKEN)Suita, Japan.
  2. Intelligence Mobility Group, Institutes of Innovation for Future Society, Nagoya UniversityNagoya, Japan.
  3. Graduate School of Arts and Sciences, University of TokyoTokyo, Japan.
  4. Research Center of Health Physical Fitness and Sports, Nagoya UniversityNagoya, Japan.

PMID: 28638333 PMCID: PMC5461270 DOI: 10.3389/fnhum.2017.00298

Abstract

Humans can adapt to abruptly changing situations by coordinating redundant components, even in bipedality. Conventional adaptability has been reproduced by various computational approaches, such as optimal control, neural oscillator, and reinforcement learning; however, the adaptability in bipedal locomotion necessary for biological and social activities, such as unpredicted direction change in chase-and-escape, is unknown due to the dynamically unstable multi-link closed-loop system. Here we propose a switching adaptation model for performing bipedal locomotion by improving autonomous distributed control, where autonomous actuators interact without central control and switch the roles for propulsion, balancing, and leg swing. Our switching mobility model achieved direction change at any time using only three actuators, although it showed higher motor costs than comparable models without direction change. Our method of evaluating such adaptation at any time should be utilized as a prerequisite for understanding universal motor control. The proposed algorithm may simply explain and predict the adaptation mechanism in human bipedality to coordinate the actuator functions within and between limbs.

Keywords: autonomous distributed control; closed-loop system; flexible bipedal locomotion; multi-link system; sensory-motor system

References

  1. J Physiol. 2015 Aug 15;593(16):3493-511 - PubMed
  2. Nature. 1999 Oct 14;401(6754):693-5 - PubMed
  3. J Exp Psychol Hum Percept Perform. 1987 Aug;13(3):405-10 - PubMed
  4. Nat Neurosci. 2002 Nov;5(11):1226-35 - PubMed
  5. Proc Biol Sci. 1998 Jul 7;265(1402):1227-35 - PubMed
  6. Biol Cybern. 1991;65(3):147-59 - PubMed
  7. J R Soc Interface. 2013 Mar 20;10(83):20120999 - PubMed
  8. Ann N Y Acad Sci. 1998 Nov 16;860:94-105 - PubMed
  9. Nature. 2000 Sep 28;407(6803):487-90 - PubMed
  10. PLoS One. 2015 May 29;10(5):e0128571 - PubMed
  11. J Theor Biol. 2002 Sep 7;218(1):1-11 - PubMed
  12. Nature. 2006 Jan 5;439(7072):72-5 - PubMed
  13. Ann N Y Acad Sci. 1998 Nov 16;860:360-76 - PubMed
  14. Science. 1985 Apr 12;228(4696):143-9 - PubMed
  15. Nature. 2015 May 28;521(7553):503-7 - PubMed
  16. J Electromyogr Kinesiol. 2013 Dec;23(6):1480-4 - PubMed
  17. Science. 2006 Nov 17;314(5802):1118-21 - PubMed
  18. Curr Biol. 2008 Mar 25;18(6):449-53 - PubMed
  19. Curr Opin Neurobiol. 2000 Dec;10(6):732-9 - PubMed
  20. PLoS One. 2013 Sep 04;8(9):e72436 - PubMed
  21. Sports Biomech. 2015 Mar;14(1):28-44 - PubMed
  22. Curr Biol. 2012 Mar 20;22(6):R180-1 - PubMed
  23. J Electromyogr Kinesiol. 2013 Dec;23 (6):1467-73 - PubMed
  24. J R Soc Interface. 2012 Jan 7;9(66):102-9 - PubMed
  25. Nat Rev Neurosci. 2004 Jul;5(7):532-46 - PubMed
  26. Biol Cybern. 1989;61(2):89-101 - PubMed
  27. Sci Rep. 2016 Apr 05;6:23911 - PubMed
  28. Gait Posture. 2003 Apr;17(2):159-69 - PubMed
  29. Sci Rep. 2015 Nov 05;5:16140 - PubMed
  30. Philos Trans A Math Phys Eng Sci. 2007 Jan 15;365(1850):153-70 - PubMed
  31. Exp Brain Res. 2008 Mar;185(3):359-81 - PubMed
  32. Nature. 2015 Feb 26;518(7540):529-33 - PubMed
  33. Gait Posture. 2009 Apr;29(3):483-7 - PubMed

Publication Types