Display options
Share it on

Nat Commun. 2017 Jul 03;8:15928. doi: 10.1038/ncomms15928.

Universal features of amorphous plasticity.

Nature communications

Zoe Budrikis, David Fernandez Castellanos, Stefan Sandfeld, Michael Zaiser, Stefano Zapperi

Affiliations

  1. ISI Foundation, Via Chisola 5, 10126 Torino, Italy.
  2. WW8-Materials Simulation, Department of Materials Science, FAU Universität Erlangen-Nürnberg, Dr.-Mack-Strasse 77, 90762 Fürth, Germany.
  3. Chair of Micromechanical Materials Modelling (MiMM), Institute of Mechanics and Fluid Dynamics, Technische Universität Bergakademie Freiberg (TUBAF), Lampadiusstr. 4, 09596 Freiberg, Germany.
  4. School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
  5. Center for Complexity and Biosystems, Department of Physics, University of Milano, via Celoria 26, 20133 Milano, Italy.
  6. Department of Applied Physics, Aalto University, P.O. Box 11100 FI-00076 AALTO, Finland.
  7. CNR-ICMATE, Via R. Cozzi 53, 20125 Milano, Italy.

PMID: 28671191 PMCID: PMC5500855 DOI: 10.1038/ncomms15928

Abstract

Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches whose universality is still debated. Experiments and molecular dynamics simulations are hampered by limited statistical samples, and although existing stochastic models give precise exponents, they require strong assumptions about fixed deformation directions, at odds with the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding to engineering mechanics. It captures the complex shear patterning observed for a wide variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches are described by universal size exponents and scaling functions, avalanche shapes, and local stability distributions, independent of system dimensionality, boundary and loading conditions, and stress state. Our predictions consistently differ from those of mean-field depinning models, providing evidence that plastic yielding is a distinct type of critical phenomenon.

References

  1. Phys Rev Lett. 2016 Aug 19;117(8):087201 - PubMed
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 1):010501 - PubMed
  3. Nat Commun. 2013;4:2927 - PubMed
  4. Nat Mater. 2003 Jul;2(7):449-52 - PubMed
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046116 - PubMed
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061102 - PubMed
  7. Phys Rev Lett. 2016 Feb 12;116(6):065501 - PubMed
  8. Phys Rev Lett. 2002 Nov 4;89(19):195506 - PubMed
  9. Phys Rev Lett. 2009 May 1;102(17):175501 - PubMed
  10. Phys Rev Lett. 2015 Oct 16;115(16):168001 - PubMed
  11. Soft Matter. 2014 Jul 14;10(26):4648-61 - PubMed
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 1):051501 - PubMed
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062403 - PubMed
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 2):046119 - PubMed
  15. Phys Rev Lett. 2009 Jun 5;102(22):225502 - PubMed
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062206 - PubMed
  17. Phys Rev Lett. 2014 Apr 18;112(15):155501 - PubMed
  18. Sci Rep. 2014 Mar 17;4:4382 - PubMed
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 2):016115 - PubMed
  20. Phys Rev E. 2016 May;93(5):053002 - PubMed
  21. Phys Rev Lett. 2011 Apr 15;106(15):156001 - PubMed
  22. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14382-7 - PubMed
  23. Phys Rev Lett. 2008 Jul 25;101(4):045501 - PubMed
  24. Phys Rev Lett. 2010 Jul 16;105(3):035501 - PubMed

Publication Types