Display options
Share it on

Sci Rep. 2017 Jun 13;7(1):3411. doi: 10.1038/s41598-017-03415-3.

Features of electron gas in InAs nanowires imposed by interplay between nanowire geometry, doping and surface states.

Scientific reports

V E Degtyarev, S V Khazanova, N V Demarina

Affiliations

  1. Physics Department, Nizhniy Novgorod State University, Gagarin Ave. 23, 603950, Nizhniy, Novgorod, Russia.
  2. Peter Grünberg Institute-2, Forschungszentrum Jülich, D-52425 Jülich, Germany and Jülich-Aachen Research Alliance-Fundamentals of Future Information Technology, Jülich, Germany. [email protected].

PMID: 28611438 PMCID: PMC5469857 DOI: 10.1038/s41598-017-03415-3

Abstract

We present a study of electron gas properties in InAs nanowires determined by interaction between nanowire geometry, doping and surface states. The electron gas density and space distribution are calculated via self-consistent solution of coupled Schroedinger and Poisson equations in the nanowires with a hexagonal cross-section. We show that the density of surface states and the nanowire width define the spatial distribution of the electrons. Three configurations can be distinguished, namely the electrons are localized in the center of the wire, or they are arranged in a uniform tubular distribution, or finally in a tubular distribution with additional electron accumulation at the corners of the nanowire. The latter one is dominating for most experimentally obtained nanowires. N-type doping partly suppresses electron accumulation at the nanowire corners. The electron density calculated for both, various nanowire widths and different positions of the Fermi level at the nanowire surface, is compared with the experimental data for intrinsic InAs nanowires. Suitable agreement is obtained by assuming a Fermi level pinning at 60 to 100 meV above the conduction band edge, leading to a tubular electron distribution with accumulation along the corners of the nanowire.

References

  1. Nat Nanotechnol. 2009 Feb;4(2):103-7 - PubMed
  2. Nanotechnology. 2010 May 21;21(20):205703 - PubMed
  3. Nano Lett. 2008 Jan;8(1):49-55 - PubMed
  4. Nat Mater. 2015 Sep;14(9):871-82 - PubMed
  5. Nano Lett. 2012 Jun 13;12(6):2768-72 - PubMed
  6. Small. 2009 Jan;5(1):77-81 - PubMed
  7. Nano Lett. 2009 Jan;9(1):360-5 - PubMed
  8. Phys Rev Lett. 1996 May 6;76(19):3626-3629 - PubMed
  9. Nano Lett. 2011 Sep 14;11(9):3550-6 - PubMed
  10. Nanotechnology. 2013 Aug 16;24(32):325201 - PubMed
  11. Nanotechnology. 2013 Feb 1;24(4):045703 - PubMed
  12. Small. 2007 Feb;3(2):326-32 - PubMed
  13. Nano Lett. 2016 Aug 10;16(8):5135-42 - PubMed
  14. Nano Lett. 2007 May;7(5):1186-90 - PubMed
  15. Nano Lett. 2011 Aug 10;11(8):3074-9 - PubMed
  16. MRS Bull. 2011 Dec 1;36(12):1052-1063 - PubMed
  17. Nanoscale. 2015 Nov 21;7(43):18188-97 - PubMed

Publication Types