Display options
Share it on

Front Neuroanat. 2017 May 29;11:46. doi: 10.3389/fnana.2017.00046. eCollection 2017.

Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys.

Frontiers in neuroanatomy

Christian Pifl, Harald Reither, Natalia Lopez-Gonzalez Del Rey, Carmen Cavada, Jose A Obeso, Javier Blesa

Affiliations

  1. Center for Brain Research, Medical University of ViennaVienna, Austria.
  2. HM CINAC, Hospital Universitario HM Puerta del SurMostoles, Spain.
  3. Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Ministerio de Ciencia e InnovacionMadrid, Spain.
  4. Departamento de Anatomia, Histologia y Neurociencia, Facultad de Medicina, Universidad Autonoma de MadridMadrid, Spain.

PMID: 28611598 PMCID: PMC5447291 DOI: 10.3389/fnana.2017.00046

Abstract

Parkinson's disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated

Keywords: MPTP; amino acid neurotransmitters; dopamine; noradrenaline; olfactory bulb; serotonin

References

  1. Ann N Y Acad Sci. 2009 Jul;1170:629-36 - PubMed
  2. Neurosci Res. 2005 Jan;51(1):111-5 - PubMed
  3. Acta Neuropathol. 2014 Apr;127(4):459-75 - PubMed
  4. Neuroscience. 2004;124(1):173-81 - PubMed
  5. Neuroscience. 1991;44(3):591-605 - PubMed
  6. PLoS One. 2015 Mar 23;10(3):e0119928 - PubMed
  7. Parkinsons Dis. 2011;2011:987084 - PubMed
  8. Exp Neurol. 2006 Jan;197(1):113-21 - PubMed
  9. Neurobiol Dis. 2012 Oct;48(1):79-91 - PubMed
  10. Acta Neuropathol. 2015 Sep;130(3):333-48 - PubMed
  11. Mov Disord. 2008 Jul 30;23(10):1407-13 - PubMed
  12. Cell Mol Neurobiol. 2006 Jul-Aug;26(4-6):659-78 - PubMed
  13. Brain Res. 1974 Aug 23;76(3):447-59 - PubMed
  14. Front Neuroanat. 2015 Mar 19;9:27 - PubMed
  15. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9977-82 - PubMed
  16. Mov Disord. 2016 Jan;31(1):135-8 - PubMed
  17. J Neurosci. 1996 Oct 1;16(19):6319-29 - PubMed
  18. J Neurosci. 2016 Jul 20;36(29):7779-85 - PubMed
  19. Front Neural Circuits. 2014 Sep 03;8:98 - PubMed
  20. J Chem Neuroanat. 2005 Jun;29(4):238-54 - PubMed
  21. Behav Neurosci. 2009 Aug;123(4):828-33 - PubMed
  22. J Comp Neurol. 1991 Feb 15;304(3):467-77 - PubMed
  23. Neurobiol Dis. 2010 Jun;38(3):456-63 - PubMed
  24. Naunyn Schmiedebergs Arch Pharmacol. 1992 Jul;346(1):57-62 - PubMed
  25. Neuroscience. 2004;124(4):929-44 - PubMed
  26. Acta Neuropathol. 2011 Jul;122(1):61-74 - PubMed
  27. Mov Disord. 2012 Jul;27(8):1019-25 - PubMed
  28. Synapse. 2007 Dec;61(12):1006-12 - PubMed
  29. Eur J Neurosci. 2002 Nov;16(10):1917-24 - PubMed
  30. Acta Neuropathol. 2013 Sep;126(3):411-25 - PubMed
  31. AJNR Am J Neuroradiol. 2011 Apr;32(4):677-81 - PubMed
  32. Mov Disord. 2004 Jun;19(6):687-92 - PubMed
  33. Behav Neurosci. 2008 Aug;122(4):816-26 - PubMed
  34. Nat Neurosci. 2009 Jun;12(6):784-91 - PubMed
  35. J Neurosci. 1995 Sep;15(9):6179-88 - PubMed
  36. Neuropharmacology. 2014 Apr;79:212-21 - PubMed
  37. Neuroscience. 1997 Dec;81(3):745-55 - PubMed
  38. J Neurochem. 2013 Jun;125(5):657-62 - PubMed
  39. Neurochem Int. 2006 Oct;49(5):519-24 - PubMed
  40. PLoS One. 2016 Feb 22;11(2):e0149286 - PubMed
  41. J Neurosci. 1987 Oct;7(10):3029-39 - PubMed
  42. Brain Res. 2000 Feb 7;855(1):90-9 - PubMed

Publication Types